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abstract: Hundreds of species are shifting their ranges in response
to recent climate warming. To predict how continued climate warm-
ing will affect the potential, or “bioclimatic range,” of a skipper
butterfly, we present a population-dynamic model of range shift in
which population growth is a function of temperature. We estimate
the parameters of this model using previously published data for
Atalopedes campestris. Summer and winter temperatures affect pop-
ulation growth rate independently in this species and therefore in-
teract as potential range-limiting factors. Our model predicts a two-
phase response to climate change; one range-limiting factor gradually
becomes dominant, even if warming occurs steadily along a thermally
linear landscape. Whether the range shift accelerates or decelerates
and whether the number of generations per year at the range edge
increases or decreases depend on whether summer or winter warms
faster. To estimate the uncertainty in our predictions of range shift,
we use a parametric bootstrap of biological parameter values. Our
results show that even modest amounts of data yield predictions with
reasonably small confidence intervals, indicating that ecophysiolog-
ical models can be useful in predicting range changes. Nevertheless,
the confidence intervals are sensitive to regional differences in the
underlying thermal landscape and the warming scenario.

Keywords: climate change, range shifts, insects, temperature,
population-dynamic model.

Climate change has driven geographic range shifts in both
the distant (Davis 1976; Coope 1977; Atkinson et al. 1987;
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Webb and Bartlein 1992) and recent past (Walther et al.
2002; Parmesan and Yohe 2003). Projections of continued
rapid warming over the next century (IPCC 2001) suggest
that many species will have to move quickly in order to
stay within their physiological tolerances, or “bioclimatic
ranges.” Predicting how these climatically suitable zones
will shift geographically is a crucial but difficult task. It is
crucial because climate change is a major threat to bio-
diversity in many ecosystems (Sala et al. 2000; Julliard et
al. 2004; Pounds and Puschendorf 2004). Thousands of
species are expected to go extinct because of a net loss of
area within their climate zones (McDonald and Brown
1992; Beaumont and Hughes 2002; Thomas et al. 2004).
Identifying bioclimatic ranges is difficult, however, because
climate has complex effects on population dynamics (Law-
ton 1995; Logan and Powell 2001; Newman et al. 2003;
Holt and Keitt 2005; Holt et al. 2005). These complexities
have made understanding the dynamics of species borders
a central issue in ecology and evolution in both basic and
applied research (Holt and Keitt 2005).

Various modeling strategies provide important insights
into the ecological and evolutionary consequences of cli-
mate change, but there is a gap between existing ap-
proaches. Existing models are typically either very general
theoretical models (Pease et al. 1989; Lynch and Lande
1993; Burger and Lynch 1995; Holt 1996; Kirkpatrick and
Barton 1997; Case and Taper 2000) or statistical models
based on observations of particular species (see reviews in
Guisan and Zimmermann 2000; Austin 2002; Pearson and
Dawson 2003). Results from general models can be dif-
ficult to use in actual predictions either because the model
parameters are hard to estimate from available data or
because the models cannot be applied to complex land-
scapes. Statistical models, on the other hand, are usually
based on correlations between a species’ existing range and
environmental factors. They therefore cannot reveal cli-
matic niches that may be suitable but unoccupied. Fur-
thermore, correlations may have limited predictive value
because factors other than weather may determine a spe-
cies’ current range and because at large geographic scales,
multiple factors may covary (Lawton 1995; Guisan and
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Zimmermann 2000). Ecophysiological models usefully
complement correlative models by instead attempting to
predict species distributions from data relating survival or
phenology to climate (Hodkinson 1999). The ecophysio-
logical approach thus allows us to make mechanistic con-
nections between climate and range and so may afford
greater confidence in the importance of particular climatic
variables. Many ecophysiological models, however, are too
specific for general interpretation and application; more-
over, in most cases in which ecophysiological models have
been used to predict insect range shifts, a single physio-
logical trait is assumed to be the only limiting factor. For
the temperate-zone insects that are the focus of most such
models, this has meant modeling the effects of temperature
on either overwinter survival (e.g., Virtanen et al. 1998)
or phenology (e.g., Porter 1995; Logan and Powell 2001)
but not both. Most species, however, respond to multiple
limiting factors.

In this article, we use experimental data to develop an
ecophysiological model that is simple enough to elucidate
a pattern of response to climate change at large spatial
and temporal scales. We use the model to predict range
shifts in a particular species, the sachem skipper butterfly
Atalopedes campestris. This species has extended the north-
ern edge of its range dramatically over the past few decades
in response to increasing temperatures (Crozier 2003,
2004b). Our model is realistic enough that its parameters
can be easily estimated from existing data, but it is simple
enough that it could also be adapted to other insect or
plant species that have different limiting factors. A useful
feature of this approach is that it considers how multiple
range-limiting factors may complicate responses to climate
change. We use the model to show how differences in
warming rates across seasons can affect temporal patterns
of range shift. This is important for predictions of range
shifts because warming rates are expected to be different
in different seasons and locations (Hassol 2004).

The application of our model to the sachem skipper
allows us to address an important criticism of ecophysi-
ological models, which is that they require too many ex-
perimental data to be practical. This is a serious concern
because the relationship between population dynamics and
climatic factors can be especially uncertain. Because our
model is based directly on experimental data, we can use
the uncertainty in parameter estimates to place confidence
intervals on the expected range expansion. Moreover, by
exploring the implications of a range of parameter values,
we are able to identify a set of conditions under which
complex responses to climate change are likely to occur.

Our model describes annual population growth rate l

as a function of temperature, where temperature is a func-
tion of latitude and time. Because changes in the biocli-
matic range explain recent range shifts in this species quite

well (Crozier 2003, 2004b), we focus here specifically on
the bioclimatic range or fundamental niche (Holt et al.
2005). This is the region in which populations are self-
sustaining ( ), so we define the range edge as the pointl ≥ 1
at which , and we explore how this edge moves inl p 1
response to climate change. The general questions that we
ask are then “What conditions will cause ranges to track
particular isotherms?” and “What is the effect of unequal
warming rates in different seasons on skipper population
dynamics at the range edge?” Because the basic phenom-
enon of interacting range-limiting factors is common to
many species, we suspect that a population-dynamic ap-
proach may have general application.

Methods: Population Dynamics, Range Edges,
and Climate Change

To see the importance of multiple range-limiting factors,
we first consider the model in an abstract form. We focus
on summer and winter temperatures as potential range-
limiting factors because first, they are often good predic-
tors of plant and insect distributions (Sutherst et al. 1995;
Ungerer et al. 1999; Bryant et al. 2000); second, they have
well-known and profound physiological impacts (Uvarov
1931; Messenger 1959); third, they are predicted to change
at different rates over the next century (IPCC 2001); and
finally, they change systematically along latitudinal gra-
dients. Other factors, such as precipitation, could readily
be substituted, although the geographic characteristics
of precipitation are quite different. Because we focus
on temperate-zone insects, our underlying population-
dynamic model is , where Nt is the populationN p lNt�1 t

density in the year t and l is the annual per capita pop-
ulation growth rate. Most insects in the temperate zone
have an active period in the summer, in which they com-
plete one to three generations, and a dormant stage in the
winter (Bale 1991). We therefore split the life cycle into
two parts: winter, in which survival is J, and summer, in
which net recruitment is R, the number of survivors at
the end of the summer produced by an individual at the
beginning of the summer. Note that R includes both fe-
cundity and survival and allows for the possibility of mul-
tiple generations. Because temperatures are a function of
latitude and time, as temperatures increase, the location
of the range edge moves, and we can track the rate of
range shift as well as life-history characteristics of the
range-edge populations. Annual population growth l is
then

l p J[T (L, t)]R[T (L, t)]. (1)w s

Here, the functions Tw(L, t) and Ts(L, t) describe winter
and summer temperatures at latitude L and time t. We
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focus here on the movement of the leading edge of the
range, but a similar model could be applied to the con-
tracting edge. At any time t, the range edge of the species
occurs at latitudes such that or at latitudes L∗ forl p 1
which

1∗R[T (L , t)] p . (2)s ∗J[T (L , t)]w

In words, equation (2) says that at the range edge, indi-
viduals that die during winter are replaced in summer, so
that the average population size is constant.

A basic issue here is that we are assuming that dispersal
is not limiting. That is, we assume that the range edge is
determined only by ecophysiological effects on population
dynamics. For the sachem skipper Atalopedes campestris,
which is our main focus, this is a reasonable assumption
because observations of adults indicate that distances dis-
persed are indeed extremely high (Taylor 1993; Opler et
al. 1995), and historical range shifts have occurred very
rapidly, having moved ∼650 km in 35 years. Moreover, as
we show in “Results,” the resulting model does a good job
of describing the current location of the northern range
edge. Because, as in any modeling research, our interest
is in identifying the simplest model that can explain ex-
isting data (Burnham and Anderson 2002), it therefore
appears that it is not worth including dispersal in the
model. For other species, dispersal may be of greater im-
portance; our model’s framework, however, could be easily
extended to allow for dispersal as well.

We analyze range shifts along a simplified landscape in
which temperature follows a linear gradient from south
to north. Simplifying the landscape makes it easier to an-
alyze how uncertainty in biological parameters translates
into uncertainty in the rate of range expansion. To allow
for climate change across the landscape, we assume that
winter and summer temperatures are linear functions of
time t and latitude L:

T (L, t) p a � b L � wt (3)w w w

and

T (L, t) p a � b L � st. (4)s s s

Here w and s are the rates of winter and summer warming,
respectively (�C/year), and bs and bw determine how tem-
perature declines with latitude. As the thermal landscape
changes over time as a result of global warming, the range
edge moves, and the distance between the initial range
edge and the new range edge constitutes the range shift.
The rate of range shift is thus the rate at which the latitude
of the range edge changes as a function of time.

As we have described, many previous models have as-
sumed that range edges are limited by single factors,
whereas range edges for many species in fact depend on
multiple factors (Uvarov 1931; Jeffree and Jeffree 1994;
Lawton 1995). To show the consequences of multiple
range-limiting factors for species’ range shifts, we first ex-
plore basic features of the model before going on to adopt
particular functions for overwinter survival and net sum-
mer recruitment. In the single-limiting-factor case, we as-
sume here that only winter survival varies with temper-
ature, but analogous results hold for other limiting factors.
We set (fig. 1A). At the range edge we thenR[T (L, t)] p cs

have

1∗J[T (L , t)] p . (5)w c

It is then straightforward to show that the rate of the
change of the range edge L∗ is

∗dL w
p . (6)

dt bw

Therefore, if the range edge is determined by only one
limiting factor, then the range edge tracks that factor. In
contrast, if both winter survival and summer net recruit-
ment are functions of temperature, then we instead have

dJ dR∗ ∗wR[T (L , t)] � sJ[T (L , t)]s w∗dL dT dTw sp . (7)
dt dJ dR∗ ∗b R[T (L , t)] � b J[T (L , t)]w s s wdT dTw s

In words, equation (7) says that the rate at which the range
edge moves depends on both summer and winter warming
rates s and w, weighted by the thermal landscape param-
eters bs and bw, recruitment and survival at the range edge
R[Ts(L∗, t)] and J[Tw(L∗, t)], and the sensitivity of re-
cruitment and survival to temperature dR/dTs and dJ/dTw.

It is also useful to consider the case for which survival
and recruitment are approximately exponential (see the
appendix in the online edition of the American Naturalist;
fig. 1B). This case demonstrates some important differ-
ences in the effects on population dynamics of single and
multiple range-limiting factors. Specifically, if ,b w 1 b ss w

then survival, the number of generations per year, and
winter temperature at the range edge decline with time
(fig. 1C). This is an interesting result because it demon-
strates that although the latitude at the range edge increases
linearly with time, the physical conditions at the range
edge are not necessarily constant. That is, the range edge
is not simply tracking a particular winter temperature or
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Figure 1: This figure shows how winter survival (J) and summer pop-
ulation growth (R) vary along a latitudinal gradient in (A) the one-
limiting-factor case and (B) the simplified two-limiting-factor case. In A,
J is a logistic function of temperature, and R is a constant; in B, both
J and R are exponential functions of temperature. The range edge occurs
where the lines cross ( ). Arrows indicate the latitude of the rangeJR p 1
edge, and the distance between arrows reflects the range shift after 10
and 20 years of warming. In C, we show how changing the relative rates
of summer (s) and winter (w) warming affects overwinter survival at the
range edge in the two-limiting-factor case.

a particular summer temperature. This result is important
because most models, whether ecophysiological or cor-
relational, assume that conditions at the range edge are
constant, at least for the dominant limiting factor. If in-
teracting factors determine range edges, then this as-
sumption is not necessarily correct; moreover, as we will
shortly demonstrate, the same effect occurs in our more
realistic model.

Modeling the Ecophysiology of the Sachem Skipper

To use the model to make quantitative predictions, we
constructed particular functions for summer net recruit-
ment R[Ts(L, t)] and winter survival J[Tw(L, t)] and es-
timated the parameters of these functions from data col-
lected by L. Crozier for the sachem skipper. We chose this
species because it has recently expanded its range north-
ward in response to climate change in the western United
States (Crozier 2003, 2004b) and because there are suffi-
cient experimental data to develop an ecophysiological
model of future range shifts. Furthermore, experiments at
the current range edge in Washington indicate that the
species is at its physiological limit.

Natural History of the Sachem Skipper

The sachem skipper Atalopedes campestris (Lepidoptera:
Hesperiidae) is a common, generalist grass-feeding but-
terfly. Its current range extends from Brazil to the United
States (fig. 2). It is abundant in disturbed habitats, where
the larvae eat lawn, weed, and native prairie grasses, and
the adults feed on many common flowers, including clover,
thistle, and alfalfa. The larvae overwinter at the ground
level in turf in various developmental stages, but they lack
specialized adaptations for winter, such as cold hardening
(Crozier 2003). Larvae complete development in the
spring, and multiple generations may occur before the
following winter. The number of generations is limited by
the development time from egg to adult, which is in turn
limited primarily by temperature (Crozier 2004a). Con-
sequently, this species completes more generations per year
in warmer climates (Scott 1986).

Modeling Sachem Skipper Survival and Recruitment

We modeled winter survival as a logistic function of tem-
perature according to

exp {a[T (L, t) � T ]}w i
J[T (L, t)] p . (8)w 1 � exp {a[T (L, t) � T ]}w i

Here Ti is the inflection point, the temperature at which
the survival probability is 0.5, and a is the rate at which



Figure 2: Top, range map for the sachem skipper showing counties (shaded areas) in which this species has been collected (Struttman 2004). The
solid line shows the current range edge predicted by the model. The dotted lines show the 95% confidence interval around the predicted range,
based on 2,000 simulations of parameter estimates. Bottom, map showing the predicted range edge after 50 years of warming at s2w6 (dotted line)
and s6w2 (solid black line). The model-predicted current range boundary is shown in gray.
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survival declines with temperature. This function is widely
used to describe survival rates in statistical analyses because
survival varies from 0 to 1, and it provides a good fit to
survival data for the sachem skipper in both the lab and
the field.

We similarly based our summer recruitment function
on field observations and experimental data. Transplant
experiments show that the primary effect of cooler sum-
mer temperatures is to increase larval development time,
which in turn can lead to fewer generations per year. The
number of generations per year, called the “voltinism” in
insects, is not a simple function of temperature because
of the high variance in development time and consequent
overlapping generations. Instead of a single number of
generations completed for the whole population, we there-
fore have different proportions of the population at the
end of the season that have completed a given number of
generations since the beginning of the season, depending
on the length of the season. We calculate the probability
of completing a given number of generations by using
convolution integrals, as shown in the appendix. We limit
our model to a maximum of three generations to avoid
overestimating population growth in warmer climates,
where density dependence is probably more important.
We therefore calculate net summer recruitment R as

3

vR p R p . (9)� 0 v
p1v

Here R0 is an individual’s net reproductive rate (or its
fecundity times its chance of surviving), is the voltinismv
(or the number of generations since the previous winter),
and is the proportion of the population resulting frompv

generations. We assume that the population grows geo-v
metrically because densities at the range edge are typically
low relative to available habitat (L. Crozier, personal ob-
servation; Gaston 1990). Given functions for both survival
and recruitment, we used numerical root-finding routines
(S� 6.1, Insightful) to solve for the latitude at the range
edge, again by using the equilibrium equation (2).

Parameter Estimates

This model has five parameters that must be estimated
from data: the slope a and intercept Ti of the logistic
function in equation (8); the individual replacement rate
R0 in the recruitment function, equation (9); and the mean
and variance of the number of degree-days necessary to
complete development, which determine the shape of the
gamma distribution that describes development time (see
the appendix for the equations). Our parameter estimates
came from lab and field data from eastern Washington

state, collected by L. Crozier. The impact of environmental
conditions on population dynamics is inherently stochas-
tic, however, and these parameters probably vary in time
or place. To quantify the resulting uncertainty in our pre-
diction of range shift, we simulated responses to environ-
mental change using 2,000 sets of parameter values derived
from resampling the data using parametric bootstraps. We
excluded combinations of parameters that caused devia-
tions in the initial range edge of more than 1� of latitude
from values predicted by the point estimates. This simu-
lation approach allowed us to place confidence intervals
on the amount of range shift and to identify the warming
scenarios in which more accurate parameter estimates
would greatly improve our predictions.

First, we fitted the logistic equation (8) to observations
of changes in population abundance in the field at 10 sites
over two winters (data reported in Crozier 2004b) under
the least squares method, using a nonlinear fitting function
(the “ms” function in S� 6.1). To estimate the uncertainty
in these two parameters while retaining their correlation
structure, we bootstrapped them in pairs by sampling with
replacement from the data and then refitting the logistic
curve, to produce 2,000 pairs of parameters.

We estimated the individual replacement rate R0 from
population censuses and experimental data. We solved for
R0 using the ratio of population sizes in the first flight
period (Nspring) and the final flight period (Nfall):

2N /N p p � p R � p R . (10)fall spring 1 2 0 3 0

We calculated p1, p2, and p3 by applying the mean and
variance in development time from field experiments at
each location to the observed season length using equa-
tions in the appendix. We double-checked these estimates
of R0 by multiplying larval survival measured in field ex-
periments (Crozier 2004a) by fecundity estimates from the
literature for closely related butterflies (Garcia-Barros
2000); reassuringly, this calculation produced results in the
same range as those calculated from equation (10). To
quantify the uncertainty in R0, we fitted equation (10) to
observations at 10 field sites over 2 years. We used the
mean and variance of the resulting estimates of R0

( , ) in a lognormal distribution frommean p 4.4 SD p 1.6
which we drew 2,000 parameter estimates. Lognormal ran-
dom variates have the advantage that they are strictly pos-
itive, and the lognormal probability distribution allows for
a long “tail,” matching the data.

Our estimates of the development time parameters came
from 2,000 resamples of two experiments at three locations
in eastern Washington (Crozier 2004a). Although mean
development time did not differ much between sites, there
were large differences in the variance (range 1,388–
21,075). The biological consequence of greater variance in
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development time is more overlap between successive gen-
erations, so the wide range for this parameter allowed a
thorough exploration of the importance of overlapping
generations.

Sensitivity Analysis

To explore the impact of each parameter individually on
the model’s predictions, we conducted a sensitivity anal-
ysis. We quantified the impact of R0, for example, by cal-
culating the predicted range shift when that parameter
varied across the full range of R0 in our simulations, while
holding the remaining parameters at their point estimates.
If one parameter has a large impact, then there will be a
large difference in predictions of range shift for different
values of that parameter. The two parameters describing
overwinter survival were highly correlated, so we reduced
them to a single parameter. We used a cubic regression in
S� 6.1 to describe the relationship between the two
parameters.

The Thermal Landscape

We analyzed the range shift by first choosing a specific
warming scenario and time frame, using exact tempera-
tures from weather stations across the United States. We
then simplified the landscape by assuming that tempera-
ture declines linearly from south to north in order to focus
on biologically driven patterns rather than geographic id-
iosyncrasies. We estimated the thermal gradients by using
linear regressions of January mean temperature and annual
degree-days (base 15.5�C) in the United States. In the
United States, temperature varies quite consistently with
latitude east of the Rocky Mountain front range, which
runs approximately parallel to 105�W longitude (note the
high r 2 value below). Mountains dominate a large part of
the landscape west of this line and are apparent in figure
2 as an unsuitable habitat for this species. West of the
mountains, the climate is much more moderate because
of winds off the Pacific Ocean, accounting for the more
northerly predicted range edge in figure 2. To capture this
important geographic difference, we analyzed temperature
gradients east and west of 105�W separately and excluded
stations over 1,300 m in elevation. We used temperature
data from U.S. National Climatic Data Center weather
stations, averaged from 1971 to 2000 (NCDC 2003a,
2003b). The winter thermal cline was based on 855 weather
stations in the east (east of 105�W, �1.4�C[L � 30] �

, ) and 188 stations in the west (west of29.3 r p 0.96
105�W, �0.92�C , ). The summer2[L � 30] � 14.3 r p 0.6
thermal cline was based on 3,142 stations in the east
( , ) and 766 stations in the2�195[L � 30] � 3,635 r p 0.86
west ( , ). Notice that linear2�193[L � 30] � 3,812 r p 0.6

models explain 60%–95% of the variability in temperature,
suggesting that the assumption of a linear thermal land-
scape is a useful first approximation. To keep the rate of
summer warming in the same units (�C) as winter warm-
ing, we assumed that 265.3 degree-days were equivalent
to a rise of 1�C in mean summer temperature, based on
a regression of the entire U.S. annual degree-days versus
April–September mean temperature.

Warming Scenarios

Over the next century, most models predict that warming
rates will vary across North America (IPCC 2001). For
example, temperatures are predicted to increase by 6�C in
winter and 3�C in summer in much of southern Canada,
as compared to 3�C in winter and 6�–7�C in summer in
parts of the United States, such as the states of Virginia
and Washington (Hadley Centre 2004). To explore the
biological impacts of these different patterns of seasonal
warming, we simulated 13 scenarios that varied both in
average annual rate and in the ratio of summer to winter
warming. We abbreviate the scenario descriptions by using
“s” and “w” for the rates of summer and winter warming,
respectively, followed by the number of degrees of warm-
ing per century (�C) in each season. For example, s2w1
means that all locations will warm 0.02�C/year in summer
and 0.01�C/year in winter. In five of these scenarios, sum-
mer warmed faster than winter (s2w1, s4w1, s4w2, s5w3,
and s6w2); in three of the scenarios, summer warmed at
the same rate as winter (s2w2, s3w3, and s4w4), and in
five scenarios, winter warmed faster than summer (s1w2,
s1w4, s2w4, s3w5, and s6w2).

Results

To test the ability of the model to predict the current range,
we calculated the expected population growth rate l at
weather stations across the United States using 1971–2000
average monthly temperatures and plotted the contour line
for , which is the model-predicted range edge. Wel p 1
expected the model to underestimate the actual range
where dispersal rates are high. We compare this prediction
to collection records of this species in figure 2. These col-
lection records are typical of what is available for many
species, especially in having known biases. In this case, the
records underestimate the frequency with which the but-
terfly occurs in the Southeast, especially in Georgia, Ala-
bama, and Mississippi, because sampling in this region is
sparse (R. Sanford, personal communication). Indeed,
other sources describe this species as consistently resident
and abundant in these areas (Scott 1986; Opler 1999).
Furthermore, collection records include sporadic appear-
ances of this species in the northern Midwest (especially
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in the Dakotas and Minnesota). These records actually
reflect the high dispersiveness of this species because pop-
ulations in that area do not persist (Scott 1986; Opler
1999). Because the model is designed to identify self-
sustaining sites and not occasional vagrants, these outlying
records are not a major concern. In short, given that the
model parameters were estimated independently of the test
data, and given the enormous area over which we are
testing the model, the model predicts the northern range
edge fairly well.

We also show the predicted range shift under two of
the warming scenarios. The bottom map in figure 2 shows
the new range edge after a 3�C rise in summer temperature
and a 1�C rise in winter temperature, or vice versa. These
conditions are comparable to 50 years of warming at s6w2
or s2w6, or 100 years of warming at s3w1 or s1w3, re-
spectively. The difference in predictions between the two
scenarios is clearly evident in the east, where the range
shifts more when most of the warming occurs in winter.
We discuss the reason for this below in the context of our
simplified landscape, which produces the same result. The
two scenarios make similar predictions along the west
coast, but this coincidence actually reflects the fact that in
both cases the insect occupies all or almost all of the sites
west of the Cascade Mountains. But the predicted l along
the range edge shown for s6w2 is 1.5 to six times higher
than values for s2w6, so the range would have expanded
farther if possible in the s6w2 scenario, as predicted in our
simple landscapes discussed below.

Temporal Dynamics of Range Shift

To clarify the biological phenomena underlying these pre-
dicted range shifts, we next consider simplified landscapes.
The differences in summer and winter temperature clines
in the two landscapes caused population dynamics at the
range edge to differ in ways that profoundly affected both
the temporal pattern of range shift and the uncertainty in
predictions of range shift. The model predicts that the rate
of range shift will be essentially constant in all scenarios
in the eastern landscape, where it tracks the �4�C winter
isotherm very closely. In the western United States, on the
other hand, the rate of range shift is initially a weighted
average of the rates of change in summer and winter tem-
perature, as described in the appendix. Over time, how-
ever, the range shift accelerates when winter warms faster
than summer and decelerates when summer warms faster
than winter (fig. 3). To compare the relative importance
of winter and summer warming rates, it is useful to com-
pare the range shift to the shift in winter and summer
isotherms (fig. 3A–3C). When winter and summer warm-
ing rates are equal, the range shift is at first much closer
to the winter isotherm but then drifts toward the summer

isotherm. The summer isotherm moves more slowly than
the winter isotherm because the underlying latitudinal gra-
dient for summer temperature is shallower. When summer
warms faster than winter, the range edge at first moves
faster than the winter isotherm but is then parallel to it
(fig. 3A); the opposite happens when winter warms faster
than summer (fig. 3C).

The temperature at the range edge ( ) is shown in∗Tw

figure 3D–3F. To understand these plots, keep in mind
that when the range shift tracks winter temperature, is∗Tw

constant. Comparing the middle and bottom rows of fig-
ure 3, one can see that the range edge ultimately starts
tracking winter temperature, but that when this happens,
the voltinism at the edge depends on the scenario. Spe-
cifically, if summer warms faster than winter, then the edge
population is ultimately almost entirely trivoltine, but if
winter warms faster than summer, then the edge popu-
lation is almost entirely univoltine. In the eastern land-
scape, the population starts out almost entirely trivoltine,
which is why it tracks the winter isotherm so closely from
the beginning. The voltinism changes only in the s1w4
and s2w6 scenarios, in which a slight downward trend
becomes apparent after 100 years.

Effects of Uncertainty on the Model Predictions

The thermal landscapes of the eastern and western United
States had different effects on the uncertainty in our model
predictions. To simplify comparisons, we explored model
predictions after 50 years of warming. East of the Rocky
Mountains, the range shifts closely tracked the rate of
winter warming regardless of parameter values, so the dif-
ference between the upper and lower 95% confidence in-
tervals of the range shift after 50 years was less than 50
km for all scenarios (fig. 4, top). This is because the species
is already at its maximum summer recruitment under the
initial conditions, so summer warming has no impact on
the range edge. The range shift therefore depends solely
on winter warming, as in a single-limiting-factor model,
and so as equation (6) shows, the rate of range shift does
not depend on the biological parameters. In the western
United States, however, uncertainty was greater in all sce-
narios, and the warming scenario had a large effect on the
size of the confidence intervals (fig. 4, bottom). The 95%
confidence intervals were smallest when summer and win-
ter warming rates were equal and largest when summer
warming rates exceeded winter warming rates.

The results of our sensitivity analysis are presented in
figure 5, which shows the predicted range shift after 50
years of warming when one parameter is changed with the
remaining parameters held at their point estimates. The
difference between the maximum and minimum range
shifts predicted across all parameter values is a measure



Figure 3: Dynamics at the range edge over time on the western landscape using the point estimates of the parameter values. The top row (A–C)
shows the distance that the range and selected isotherms are expected to move under exemplar warming scenarios. We show the shift in mean
January temperature given warming rates of 0.02�, 0.04�, and 0.06�C/year (labeled T2, T4, and T6) and in mean summer temperature from April
through September at a 0.04�C/year warming rate (S4). The middle row (D–F) shows the winter temperature at the range edge over time. The
bottom row (G–I) shows the proportions of the range edge population that are univoltine (p1), bivoltine (p2), and trivoltine (p3) and how they
change over time for selected scenarios. Warming scenarios are grouped into columns such that in the first column (A, D, G), summer warms faster
than winter ( ), in the second column (B, E, H), rates are equal ( ), and in the third column (C, F, I ), winter warms faster than summers 1 w s p w
( ). Individual replacement , mean development degree-days, and (i.e., discrete generations). The winterw 1 s rate p 5.2 time p 417 variance p 2,500
survival function intercept was 5.6�C, and the slope was 0.62.
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Figure 4: Predicted range shift (squares) with 95% confidence intervals (vertical lines) after 50 years of warming under each scenario. The confidence
intervals are based on 2,000 simulations of parameter values for the (top) eastern and (bottom) western landscapes. Circles and crosses show the
shifts in summer and winter isotherms, respectively, for the given scenario.

of the sensitivity of the model to that parameter. For most
parameters, this difference was less than 60 km, which is
small compared to the absolute range shift, but the dif-
ference was somewhat larger for mean degree-days per
generation (up to 128 km). To understand why develop-
ment time has such large effects, it is important to realize
that there is a plateau in the recruitment function due to
the lag between flight periods in this species. Increasing
the mean degree-days per generation lengthens this lag.
When the time between flight periods is extended, more
warming is required to push the population toward ad-
ditional generations per year and thus higher summer re-
cruitment. This additional warming requirement slows the
range shift, producing the downward slope in figure 5C.

Note that the variance in degree-days per generation also
affects the size of the plateau in the recruitment function.
Higher variance causes generations to overlap more
strongly, reducing the plateau. The impact on the range
shift is noticeable only at very low variance (fig. 5B), which
causes generations to be almost discrete.

Discussion

Our work shows that a hybrid approach that links phys-
iology, population dynamics, and landscape-scale phe-
nomena can be usefully applied to studies of range shifts.
This approach provides important insights when responses
to environmental changes are complex and when range
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Figure 5: Sensitivity analysis of the model parameters in the western landscape. Each panel shows the predicted range edge after 50 years of warming
for exemplar scenarios. The parameters are (A) the correlated slope and intercept of the winter survival function, with slope values shown on the
X-axis; (B) variance; (C) mean degree-day requirement for development from egg to adult; and (D) individual replacement rate R0. The range of
parameters reflects the 95% confidence interval around point estimates. The flatter the slope of each line, the less sensitive the predicted range shift
is to that parameter.

limits are sensitive to multiple climatic factors. Complex
responses to climate change have similarly been high-
lighted by other population-dynamic models. For instance,
Logan and Powell (2001) found that nonlinear responses
to rising temperatures can result from developmental syn-
chrony requirements, and Newman (2004) showed that
carbon dioxide, temperature, and nitrogen interact to de-
termine aphid population growth rate. Multiple climatic
limiting factors, usually including precipitation and tem-
perature, are common in correlation analyses and some
population studies (Murphy and Weiss 1992). As different
environmental factors change at different rates over the
next century, shifts in species’ geographic ranges will de-
pend strongly on which factors are most limiting and how

factors interact. Multiple limiting factors produce very dif-
ferent rates and patterns of range shift than a single lim-
iting factor (figs. 1, 3). We therefore argue that interaction
effects should be considered in mechanistic models of
range shifts and that the population-dynamic models that
we have introduced here provide a useful starting point.

An important effect of interacting factors in our model
is that there is a two-phase trajectory in which the relative
importance of environmental variables changes over time.
The transition between these phases is marked by either
acceleration or deceleration of the range shift. In the sa-
chem skipper, this transition occurs when the population
reaches either a minimum recruitment threshold or a car-
rying capacity, at which point further summer warming
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no longer enhances recruitment. These lower and upper
thresholds define two different minimum winter temper-
atures at which population growth rate is 1, generating a
range edge (fig. 3D, 3F). The warming scenario determines
in which of these directions the population will go. In all
cases, the range shift eventually tracks a winter isotherm,
but if winter warms faster than summer it tracks a higher
isotherm than if summer warms faster than winter.

We also found that uncertainty in the biological param-
eters can interact with the uncertainty in warming sce-
narios and landscapes in complex ways (figs. 4, 5). For
example, uncertainty is greatest in warming scenarios in
which summer warms faster than winter (fig. 4). Such
scenarios are predicted for many regions around the world,
especially in the midtemperate zone (Hadley Centre 2004).
There were also important differences between eastern and
western sections of the northern range edge (fig. 4), not
because of any genetic differences in the populations but
because of systematic effects of the underlying thermal
gradients in temperatures. This result indicates that range
edges are not necessarily homogeneous, as is often as-
sumed.

A limitation to broad application of our modeling ap-
proach is that it requires species-specific experiments, ide-
ally at the range edge, which may be difficult to carry out
for many species. Nonetheless, the narrow confidence in-
tervals in figure 4 indicate that even a small number of
data can be very useful. Furthermore, sufficient data al-
ready exist for many species, especially those whose po-
tential range expansions cause the most concern, such as
pest insects. The benefits of this more complex model over
a correlative model are that we have greater confidence in
the environmental criteria invoked and the shapes of re-
sponse functions, that we can identify climatic niches that
are not apparent in our current climate, and that the model
provides insight into the population-dynamic processes
affected by climate change.

An additional caveat is that, as with all bioclimatic mod-
eling, our approach is most useful for species whose actual
ranges are very similar to their potential ranges, implying
that nonclimatic factors such as species interactions and
dispersal are of minor importance in limiting the range.
As we show in figure 2, the bioclimatic range predicts the
actual range of the sachem skipper very well. Natural en-
emies and competitors are not major factors at the current
range edge (Crozier 2001, 2004a), and it seems unlikely
that this will change as a result of climate change. We did
not include dispersal primarily because doing so would
have required that we estimate additional parameters,
which would have increased the overall uncertainty in the
model’s predictions, with little gain in predictive ability
(Burnham and Anderson 2002). Including dispersal would
change our predictions most if maximum dispersal rates

were much slower than the rate at which the bioclimatic
range shifts. This is unlikely for the sachem skipper, which
is a highly dispersive species and has abundant habitat
outside its current range. Indeed, this species has also al-
ready demonstrated the ability to move faster than the rate
required in our projections.

Of course, many species cannot disperse as fast as their
bioclimatic range will shift. Nonetheless, we emphasize
that our modeling approach is still useful for two reasons.
First, it is crucial to identify the bioclimatic range in order
to identify those species for which dispersal will be prob-
lematic. Second, our model provides a basic structure to
which one can add additional limitations such as dispersal
or species interactions. Numerous dispersal models already
exist that describe a lag behind the bioclimatic range (Kot
et al. 1996; Neubert et al. 2000; Keitt et al. 2001) or source-
sink dynamics beyond the bioclimatic range (Holt 1996),
and these could certainly be combined with our model.
Our model is a necessary first step in developing more
complex models because in all cases it is essential to iden-
tify source populations, which can only occur within the
bioclimatic range.

In summary, as the climate warms over the next century,
physical conditions will develop that do not occur today.
Ecophysiological models are crucial for predicting novel
behaviors. Furthermore, considering multiple range-
limiting factors is essential for explaining responses to
global change (Newman 2004), and population-dynamic
models are a useful tool for describing these effects. We
predict that currently infrequent life-history strategies may
become more common in future climates, whether by se-
lection or by facultative responses, and that such strategies
may affect range shift responses. We caution, however, that
it is most difficult to make predictions under unequal
warming scenarios, and yet these scenarios are quite likely
in many mid- and high-latitude regions. In short, although
climate matching has become the dominant approach in
studies of climate change, ecophysiological models are still
vitally important (Hodkinson 1999).
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