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Abstract. 1. Previous work has shown that transmission of some insect patho-
gens is a non-linear process. A number of hypotheses have been put forward as
explanations for this phenomenon; however, none have proven wholly satisfac-
tory. Here we test the effects on transmission of spatial distribution of an insect
virus by testing whether or not experimental manipulations of pathogen clumping
lead to different values of a clumping parameter. The gypsy moth nucleopoly-
hedrovirus (LdMNPV) was used, which is transmitted when larvae consume virus
released from previously infected larvae that have died on foliage.
2. It was found that even when virus densities on foliage were equal, overall

mortality was lower when virus-killed cadavers were clumped on foliage.
3. Non-linearity is more pronounced when cadavers are clumped than when they

are placed at random on the foliage. Placement of droplets containing LdMNPV
on foliage resulted in more linear transmission compared with cadavers.
4. Spatial clumping of viral inoculum thus provides part of the explanation for

non-linear transmission in this system. The ultimate explanation for non-linear
transmission is likely to involve some combination of spatial clumping and
heterogeneity in behaviours such as feeding rate or the ability to avoid pathogen.
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Introduction

Both theory and data have suggested that horizontal trans-

mission plays a key role in the dynamics of infectious

diseases (McCallum et al., 2001). In studies of the ecology

of baculoviruses, fatal, directly transmitted diseases of

arthropods (Cory et al., 1997), this importance has become

clearer partly through efforts to test mathematical models

of disease. Much attention has focused on the so-called

‘mass-action’ assumption typical of such models

(McCallum et al., 2001). For baculoviruses, which are

transmitted when hosts accidentally consume infectious

virus particles, this assumption is often written as

dS

dt
¼ �vSP: ð1Þ

Here S is the density of uninfected hosts, t represents time

and P is the density of infectious virus particles in the

environment. The transmission coefficient n is assumed to

be a constant, and dS/dt is thus linearly related to both S

and P. Because this assumption has important effects on

the behaviour of the models, such models are sometimes

known as ‘linear transmission’ models. Although for many

baculoviruses, there is good empirical evidence that this

assumption is incorrect (Dwyer, 1991; Knell et al., 1998),

there is only modest evidence in support of particular alter-

native models (but see Hails et al., 1997 and Dwyer et al.,

1997).
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In previous work, it was shown that an epidemic model

based on equation 1 does not adequately describe the inten-

sity of epidemics of nucleopolyhedrovirus in naturally

occurring gypsy moth populations (Dwyer & Elkinton,

1993), which suggested that equation 1 does not apply to

the transmission of this virus. In subsequent work various

possible explanations for the failure of this model have

been reported. Specifically, it was shown that equation 1

does not apply in small-scale experiments (D’Amico et al.,

1996), suggesting that the failure of the model to explain

epidemics has to do with transmission at a small scale.

Additional small-scale experiments showed first that the

failure of the model is not due to changes in per capita

transmission with changes in the density of uninfected

larvae S, and second that transmission does not change

with changes in defoliation levels (D’Amico et al., 1998).

The transmission rate of the virus, however, does change

with virus density, and the extent of the change depends in

turn on the host’s population of origin (Dwyer et al., 1997;

G. Dwyer, unpubl. data). These latter effects are consistent

with epidemic models that incorporate host heterogeneity

in susceptibility, suggesting that such host heterogeneity

may explain non-linear transmission in this and other bacu-

loviruses. Host heterogeneity in susceptibility, however,

may be only one of several possible explanations for non-

linear transmission (D’Amico et al., 1996; Dwyer et al.,

1997). In this article, data are presented suggesting that

another possible explanation is small scale spatial patchi-

ness in the distribution of the virus on foliage.

The gypsy moth nucleopolyhedrovirus (also called

LdNPV) is transmitted by ingestion of infective virions

encapsulated within proteinaceous occlusion bodies, typic-

ally while caterpillars are eating foliage. After an infection

is initiated larvae die within 2 or 3 weeks. The bodies of

virus-killed larvae are fragile sacks of occlusion bodies and

liquid, which rupture and spread their contents on foliage,

or, in the case of later instars, the bole of the host tree

(Cory et al., 1997). The virus thus deposited on foliage

supplies inoculum for within-season transmission; several

waves of virus mortality occur during the larval season,

which occurs from mid-May to early July (Woods &

Elkinton, 1987). The defoliation occurring during this

time, particularly during high-density larval outbreaks,

intensifies the concentration of virus on the foliage.

Between-year transmission occurs via a different process;

egg masses laid by female moths in the summer are con-

taminated with virus physically scraped off the tree bole

during oviposition (Murray & Elkinton, 1989, 1990). The

virus overwinters on the egg mass, and is ingested by hatch-

ing larvae as they emerge in the spring. These early larvae

disperse on the wind via ballooning. After the first instar,

larval movement is greatly reduced, which means that the

initial spatial distribution of virus changes only slightly as

the season progresses.

Clearly, spatial clumping is a pronounced feature of the

within-season transmission of nucleopolyhedroviruses in

insects such as the gypsy moth, because larvae become

infected by feeding on foliage contaminated with virus

particles deposited when other larvae die from the virus.

Because larvae are small relative to the area of leaves of

most gypsy moth host plants, and because each infectious

cadaver consists of a large number of infectious doses, the

virus is very clumped on the foliage. Occlusion bodies may

spread across the foliage slightly, particularly when it rains

(D’Amico & Elkinton, 1995), but generally they remain

highly concentrated.

Materials and methods

Mathematical models of the gypsy moth–virus interaction

To understand the consequences of natural history for

epidemics of the virus, mathematical disease models can be

used. This original model of the dynamics of the gypsy

moth virus (Dwyer & Elkinton, 1993) provides a useful

starting point for describing the model tested here. That

model is

dS

dt
¼ �vSP; ð2Þ

dI

dt
¼ vSP� vSðt� tÞPðt� tÞ; ð3Þ

dP

dt
¼ �vSP� mP; ð4Þ

where S, I, and P are the densities of uninfected insects,

infected insects, and infectious cadavers respectively, n is

the transmission parameter, t is the time between infection

and death, and m is the rate at which the occlusion bodies in

infectious cadavers are broken down. Two important fea-

tures of this model are that, first, it assumes that transmis-

sion is linear, as described in the Introduction. Second, it

ignores spatial structure of any kind. Because hatching

gypsy moth larvae disperse long distances, it is suspected

that virus populations in naturally occurring gypsy moth

populations have little large-scale spatial structure,

although the relevant data are lacking. The argument

here, however, is that a key element that is missing in this

model is small-scale spatial structure. This spatial structure

arises as a consequence of the fact that infectious virus

particles come in units of whole cadavers that are made

up of vast numbers of occlusion bodies, so that spatial

structure is manifest at the scale of leaves or portions of

leaves. Simultaneously, however, space in such situations is

clearly continuous, so that metapopulation models are not

correct either. Modelling this kind of spatial structure

requires either detailed simulations or mathematical

approximation techniques that are technically complex

(Bolker & Pacala, 1999; Lewis & Pacala, 2001). Because

no such models are available for insect–virus interactions,

the host–parasitoid modelling literature is used instead.

Application of host–parasitoid models to insect–baculo-

virus interactions is not straightforward, for several reasons

(Bonsall, 2004; Boots, 2004). For one reason, in baculo-

virus epidemics, there are potentially several generations of
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the pathogen per host generation and the pathogen slowly

breaks down, whereas in most host–parasitoid models there

is only one parasitoid generation per host generation and

the parasitoids do not experience mortality during the per-

iod while they are attacking the hosts. Host–parasitoid

models can still be applied to this experimental data

because in these experiments there is only one generation

of the virus, and because the bags prevent the death of the

virus.

The host–parasitoid model applied to these data assumes

that the frequency distribution of parasitoid attacks on

hosts is described by a negative binomial distribution. The

fraction of hosts escaping infection f(P) is then given by the

zero term of the negative binomial, according to which,

fðPÞ ¼ 1þ a

k

� �
P

h i�k

: ð5Þ

Here f(P) is the probability of escaping infection, P is the

density of parasitoids, a is the proportion of the host area

searched by the parasitoid, and k is the inverse of the

squared coefficient of variation of the distribution of

attacks. The justification for this assumption is that

hosts are assumed to be distributed among discrete

patches, while the parasitoids are assumed to first disperse

among patches, and then to search within patches for

hosts to attack (May, 1978). Under these assumptions, if

the distribution of attacks within each patch follows a

Poisson distribution, then the distribution of attacks

over all patches will have a variance that is greater than

its mean (May, 1978). One such over-dispersed distribu-

tion is the negative binomial, which may provide a useful

approximation to the overall distribution of attacks. Note

that this model does not describe the distributions of host

and parasitoid explicitly, nor does it allow for details of

the behaviour of host or parasitoid. For these reasons, it

is generally assumed to provide only a phenomenological

description of the small-scale interactions between host

and parasitoid (May, 1978; Hassell, 1982). It is hoped

that the model will provide at least an approximate

description of the small-scale interactions between the

gypsy moth and its virus. The corresponding linear

model with no clumping is the familiar random parasitoid

model of Nicholson and Bailey (1935) where the propor-

tion of hosts surviving is given by the zero term of the

Poisson distribution:

fðPÞ ¼ e�aP: ð6Þ

This latter model embodies an assumption analogous to the

mass action assumption, in that the number of encounters

with hosts (the number of attacks) Ne by P parasitoids is in

direct proportion to density of hosts (N) and parasitoids

(Ne ¼ a N P).

The constant a has been defined as the ‘area of discovery’

or ‘search efficiency’; a species-specific constant represent-

ing the mean proportion of the total area searched by a

parasitoid in its lifetime (Nicholson, 1933; Nicholson &

Bailey, 1935; Hassell, 1978, 1982). In practice, it is usually

estimated by fitting models 5, 6, or a related model, to the

observed fraction of hosts escaping parasitism. A substan-

tial amount of literature has shown that a is not constant,

but varies with both host and parasitoid density (see

reviews by Hassell, 1978). These findings are analogous to

the demonstration of non-linearity of transmission in host–

pathogen models (Dwyer & Elkinton, 1993; D’Amico et al.,

1996; Knell et al., 1998).

In short, although a full model of a baculovirus epizootic

with small-scale spatial structure does not currently exist, it

is possible to approximate the short-term dynamics of the

virus using the negative-binomial model of parasitoid

attacks. This approach is similar to that of Briggs and

Godfray (1996), who replaced the nSP term in equation 1

above by the term k ln[1 þ (nP/k)]S in an effort to produce

a continuous-time approximation to the negative-binomial

model.

An additional key feature of the negative-binomial model

is its similarity to a previous model that incorporated host

heterogeneity in susceptibility (Dwyer et al., 1997). To see

this, equations 2–4 were simplified to match the conditions

of previous experiments. There is no change in the density

of the virus after the start of the experiment, so dP/dt ¼ 0

in equation 3, which allows equations 2–4 to be solved for

the fraction of hosts F(P0) that become infected by the end

of the experiment as a function of initial virus density P0,

which is

FðP0Þ ¼ eð�vP0tÞ: ð7Þ

Note that, if n � t ¼ a, then equation 7 is identical to

equation 6, with the proviso that the units on a, in this

case, depend on whether P0 is defined to be the total

number of cadavers, or the density of cadavers. Most epi-

demiological models assume that transmission depends on

density, but for these experiments, in which the area is

fixed, P0 can alternatively be defined to be the total number

of cadavers. A similar simplification and redefinition of an

epidemic model that allows for heterogeneity in susceptibil-

ity gives the same model as the negative-binomial host–

parasitoid model.

For the purposes of describing these experiments, then,

the negative-binomial host–parasitoid model and the

insect–pathogen model with heterogeneity in susceptibility

are identical. Because modelling host heterogeneity in sus-

ceptibility models is simpler than allowing for small-scale

spatial structure, the heterogeneity in susceptibility model

has two advantages over the negative-binomial model.

First, it is part of a full epidemic model, and second it can

be connected to the biology more directly (Dwyer et al.,

1997). These advantages, however, do not mean that host

heterogeneity in susceptibility is the complete explanation

for the non-linear transmission of the gypsy moth virus.

Indeed, the fact that the two models make identical predic-

tions in our experiments suggests that a truly mechanistic

model of this system is likely to be more complicated than

either model. More practically, the identical predictions at

the scale of leaves suggests that distinguishing the relative

importance of these two mechanisms requires careful

experimentation.
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In this paper, it is tested whether or not spatial clumping

affects transmission of the gypsy moth virus by determining

whether experimental manipulations of pathogen clumping

lead to different values of the parameter k in equation 5.

The approach is to use small-scale field experiments similar

to those that have been used to test models of disease

transmission in insects (Dwyer, 1991; 1992; Dwyer &

Elkinton, 1993; Thomas et al., 1995; D’Amico et al.,

1996; Knell et al., 1998). In this case, the experiments

involve gypsy moth larvae confined in mesh bags on foliage

of red oak (Quercus rubra) or black oak (Quercus velutina)

trees, contaminated with larvae killed by the gypsy moth

nucleopolyhedrovirus.

To fit the model to this system the variables are redefined

as follows. P is a lethal dose of pathogens; previous

research suggests that each cadaver contains 10–20 lethal

doses (Shapiro et al., 1986; J. D. Podgwaite, unpubl. data).

For the parameter a two approaches are taken; first the

data are fitted on survival to equation 2, second returning

to the original definition of Nicholson and Bailey (1935) as

the proportion of the host universe traversed by parasi-

toids. In this case, it is defined as the proportion of host

foliage consumed by gypsy moths in the experiments, a

quantity that can be measured directly.

Experimental methods: transmission experiments

In this experiment similar methods are used to those of

Dwyer (1991), which are described here briefly (also see

D’Amico & Elkinton, 1995; D’Amico et al., 1996). The

basic idea behind these experiments is to confine uninfected

larvae on oak branches that have been experimentally con-

taminated with virus-killed cadavers. The fraction of the

larvae that become infected can then be used to quantify

the horizontal transmission rate of the virus, which is

essentially the probability of infection per unit time and

per virus-infected cadaver. In all of the experiments carried

out here, all of the healthy larvae are initially reared in the

laboratory on an artificial diet (Bell et al., 1981) until the

third instar, to ensure that they are uninfected. These unin-

fected larvae are then placed on branches that contain

virus-contaminated foliage, and allowed to feed for a

week. At the end of the week, the bags are removed to

the laboratory, and each larva is reared in an individual cup

of artificial diet until death or pupation.

In previous experiments, the source of virus used on the

foliage was larvae reared on virus-contaminated diet from

hatch until just before death, at which time they were

placed on the experimental branches. This protocol was

intended to give a natural spatial distribution of virus. In

the experiments reported here, however, the aim was to

manipulate the spatial distribution of the virus.

Accordingly, in the first version of the experiment, in July

1993, at Otis Air National Guard Base, Massachusetts,

virus-killed cadavers were used on leaves in clumped and

uniform distributions. Specifically, 20 cadavers per branch

in each treatment, with exactly 40 leaves on each branch.

The uniform treatment had one cadaver on every other leaf

(counting up from the base of the enclosed branch), while

the clumped treatment had ten cadavers on one leaf and ten

on another. Twenty-five healthy test larvae were then con-

fined on each branch for 1 week, removed, and reared as

previously described. A Wilcoxon signed-rank test was used

to compared mean mortality in these two treatments.

Given that an effect of clumping was observed in the first

experiment, in the second version of the experiment, an

attempt was made to quantify the effect of clumping on

transmission. To do this, the total density of cadavers per

bag was varied, and the spatial clumping parameter k was

used as a measure of the effect of clumping. This experi-

ment was carried out in August 1997 on red oaks at the

North-eastern Forest Experiment Station laboratory in

Ansonia, Connecticut, U.S.A. Infectious cadaver densities

of 0, 5, 10, 20, 40, 80, and 160 cadavers were used per 40

leaves. A random number table was used to choose leaves,

and to place cadavers on leaves in either random or

clumped distributions. In the random treatment, leaves

were chosen randomly with replacement from the 40 leaves

in the bag until each cadaver had been assigned a leaf. For

all the clumped treatment densities except the five-cadaver

density, five leaves were chosen at random, and cadavers

were divided evenly among these leaves. For the clumped

five-cadaver density, each of the five cadavers was placed

on a randomly chosen leaf. Healthy test larvae were then

confined on each branch for 1 week, removed, and reared

as above. SAS NLIN (SAS Institute, 1988) was then used

with the derivative-free option to fit equation 5 to the

proportion surviving the experiment. To quantify the

effects of clumping, this equation was fitted separately to

each of the two spatial clumping treatments, clumped and

random. Also, to test the effects of clumping, equation 5

was re-fitted using a point estimate of the area-searched

parameter a that was estimated from an independent feed-

ing experiment, to derive additional estimates of the para-

meter k for each spatial clumping treatment. In statistical

tests for an effect of clumping, equation 5 was used as the

null hypothesis, that there is no effect of clumping.

In the final version of this experiment, in May of 2000,

an attempt was made to eliminate the effects of the clump-

ing of virus in cadavers. This was carried out by using a

purified virus suspension rather than infectious cadavers, so

that the virus could be applied to test branches using an

electronic pipette in units of single lethal doses, rather than

the multiple infectious doses found in entire cadavers. The

branch-wide doses that were used were 100, 200, 400, 800,

and 1600 single lethal doses (an LD90 dose, or & 1 � 106

occlusion bodies). Each set of doses were used in each of

the spatial treatments, clumped and random. In the

clumped treatment, the effects of having the virus clumped

into cadavers was simulated by placing the virus onto

leaves in the form of ten lethal doses that were contiguous

on the foliage, so that the virus in the clumped treatment

was applied in units of 0, 10, 20, 40, 80, and 160 groups of

ten lethal doses each. In the random treatment, single lethal

doses were placed individually and randomly on the foliage
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according to a computer-generated table. The overall

density of the virus in the two treatments, however, was

identical. To assess the ability of each model, equation 5 or

equation 6, to describe the data, a lack of fit test was

carried out, which tests whether the data can reject a parti-

cular model. To do this, an approximate F statistic was

calculated: F ¼ [(SSE � SSPE)/(g � p)]/[SSPE/n � g],

where SSE is the model error sum of squares, SSPE is the

‘pure’ error sums of squares for a model that allows for

a different mean response for each dose level and is thus a

best-case regression model, n is the number of reps (bags), g

is the number of dose levels and p is the number of para-

meters in the model (Neter et al., 1996). This was compared

with an F distribution with g – p and n – g degrees of

freedom. A significant F indicates rejection of the model.

To determine if the clumping parameter k for the model 6

was significantly different between clumped and random

treatments, an approximate Z statistic was calculated:

Z ¼ (|kcl � kra|)/
p
[(SEkcl)

2 þ (SEkcra)
2] & N(0,1).

Measuring the area consumed by a gypsy moth larva

The virus transmission experiments that have been

described above were aimed at manipulation of the small-

scale spatial patchiness of the virus, and thus have to do with

the spatial clumping parameter k in equation 2. In contrast

to k, the parameter a, which represents the fraction of the

leaf area that is consumed by a host gypsy moth, can be

estimated independently of virus transmission data, at least

in theory. Another way of testing the adequacy of equa-

tion 2 is thus to estimate a by measuring the feeding rate of

gypsy moth larvae, and then comparing this estimate to an

estimate derived by fitting a to the virus transmission data.

To measure a independently of the transmission experi-

ments here, 30 gypsy moth larvae were confined inside

mesh bags on tree branches with five to eight undamaged

black oak leaves for 24 h, using one insect per bag. The

area eaten was then multiplied by seven to give a value

appropriate for the 7-day transmission experiments

described below. This experiment ran for only 24 h because

the amount of damage occurring after the full 7 days makes

it difficult to determine the original dimensions of a leaf.

The leaves were removed from the tree and returned to the

laboratory. The area of foliage missing from damaged

leaves was measured by tracing the outlines of leaf damage

onto the graph paper, and adding the areas of the whole

and partial squares within the traced outlines.

Results

The effects of clumping in these experiments were roughly

consistent across different experiments. In the first experi-

ment (Fig. 1), in which only one virus density was used,

mortality in the clumped treatment was significantly less

than in the uniform treatment (n ¼ 17, P < 0.001) even

though the virus density per leaf was the same. In the second

experiment, in whichmultiple virus densities were used, trans-

mission was a non-linear function of virus density in both the

clumped and randomly distributed treatments (Fig. 2). Note
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Fig. 1. Fraction of third-instar gypsy moth larvae dying from

LdMNPV after 1 week confinement on foliage contaminated with

first instar LdMNPV-killed larvae. LdMNPV-killed first instars

were placed on individual leaves in either a uniform or clumped

pattern. Error bars represent one standard error of the mean

proportion.
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Fig. 2. The natural log transformed mean survivorship of third-

instar gypsy moth larvae after 1 week confinement on foliage con-

taminated with first instar LdMNPV-killed larvae. LdMNPV-

killed first instars were placed on individual leaves in either a

random (a) or clumped (b) distribution, as determined by a com-

puter-generated random number table. Data are represented by

diamonds, and curves are the best-fit negative-binomial model

(May, 1978) (solid lines) and null model (dotted lines). Error bars

represent one standard error of the mean proportion.
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that, to present and analyse the data, the negative natural log

of the fraction infected was used, which makes it easier to see

the difference between the linear and non-linear transmission

models, while preserving the property that mortality increases

along the vertical axis. For the clumped treatment the lack-

of-fit of the non-linear model was F5,26 ¼ 2.21, P ¼ 0.08

compared with F6,26 ¼ 11.3, P < 0.001 for the linear

model. For the random treatment the lack-of-fit of the non-

linear model was F5,24 ¼ 1.81, P ¼ 0.15 compared with

F6,24 ¼ 16.1, P < 0.001 for the linear model. The data from

both the clumped and random treatments thus reject the

linear model, but not the non-linear model. The best-fit

heterogeneity parameter k for the clumped cadavers was

0.144 � 0.048 SE compared with 0.318 � 0.068 SE for the

random cadavers, and these were significantly different

(Z ¼ 2.09, P ¼ 0.037). As indicated above, the significantly

higher values of k in the randomly placed cadavers indicate

lower degrees of clumping or heterogeneity in the fit of

model 2 to the mortality data from the random compared

with the clumped treatment.

In the third experiment, when the doses were droplets of

LdNPV rather than cadavers, transmission in both treat-

ments was more nearly linear (Fig. 3), but the data reject

the linear model only in the random treatment. For the

clumped treatment, the lack-of-fit of the non-linear model

was F4,42 ¼ 0.79, P ¼ 0.53 compared with F5,42 ¼ 1.77,

P ¼ 0.14 for the linear model. For the random treatment

the lack-of-fit of the non-linear model was F4,42 ¼ 0.53,

P ¼ 0.71 compared with F5,42 ¼ 3.10, P ¼ 0.017 for the

linear model. Nevertheless, the strength of the clumping

effect was much weaker, in that the estimated clumping

parameters were k ¼ 1.58 for the clumped treatment and

k ¼ 1.50 for the random treatment. The values of these

parameters were not significantly different from each

other (Z ¼ 0.81, P ¼ 0.93), but both were less clumped

(higher k) than the corresponding values in the second

experiment with cadavers (clumped treatment: Z ¼ 1.57,

P ¼ 0.12; random treatment: Z ¼ 2.91, P ¼ 0.003).

To test the transmission of a virus at a mechanistic level,

the area-searched parameter a was also measured, as the

area of foliage eaten per day by a third-instar larva over

7 days, which was 0.82 � 0.12 cm2. The corresponding

value of a for third instars, that is the estimated proportion

of foliage consumed over 7 days was a ¼ 0.0175 � 0.0026

for the second experiment. The corresponding values of a

as calculated by fitting equation 5 to the data from the

second transmission experiment, which used cadavers,

were of a ¼ 0.013 � 0.004 SE for the random treatment

and a ¼ 0.040 � 0.05 SE for the clumped treatment

(Table 1). The similarity of these best-fit values of a to the

experimental estimate of a suggests that the model may

incorporate the correct mechanism of transmission in the

gypsy moth. Nevertheless, the values for the third experi-

ment, which used droplets of virus suspension instead of

cadavers, were quite different; for that experiment,

a ¼ 0.0016 � 0.0026 SE for the random treatment and

a ¼ 0.0031 � 0.0031 SE for the clumped treatment

(Table 1).

Discussion

In general, the results show a strong effect of the clumping

of cadavers on disease transmission in gypsy moth larvae.

As in Dwyer (1991), the first experiment showed simply

that clumping reduces transmission rates. The second and

third transmission experiments, however, showed that

clumping can have a strong effect on the degree of non-

linearity in the transmission of this virus. In the across-

density experiment using virus-killed cadavers, both of the

experimental treatments (clumped cadavers vs. randomly

placed cadavers) showed sublinear transmission, although

there was a significant difference between k-values calcu-

lated for the treatments. The lethal doses of pathogens

remained highly clumped within the cadavers (10–20 per

cadaver) in both treatments in these experiments, and this

could explain the remaining non-linearity evident in the

random treatment. Indeed, in the experiment in which dro-

plets of virus were used, which spreads evenly and thinly on

foliage, the non-linearity was eliminated altogether. Spatial

clumping may therefore provide at least a partial explana-

tion for non-linear transmission in this host–pathogen
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Fig. 3. The natural log-transformed mean survivorship of third-

instar gypsy moth larvae after 1 week confinement on foliage con-

taminated with droplets of LdMNPV suspension in distilled water.

Droplets were placed on foliage in either a random (a) or clumped

(b) distribution, as determined by a computer-generated random

number table. Data are represented by diamonds, and curves are

the best-fit negative-binomial model (May, 1978) (solid lines) and

null model (dotted lines). Error bars represent one standard error

of the mean proportion.
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interaction. Furthermore, the similarity of the value of the

area-searched parameter a from our feeding experiment to

the value estimated from the cadaver transmission experi-

ment suggests that a model that incorporates feeding rate

and spatial clumping is a reasonable approximation to the

dynamics of transmission in this virus.

Nevertheless, the difference in the degree of non-linearity

between the cadaver experiment and the droplet experiment

suggests that there are mechanisms operating in this system

that are not considered by the spatial-clumping model.

Specifically, it is suspected that some aspect of the behav-

iour of gypsy moth larvae besides their feeding rate affects

transmission. First, though, it can be noted that overall

levels of mortality were considerably higher in the droplet

experiment than in the cadaver experiment, even though

the total amount of virus in the two experiments was

roughly the same, and even though the total leaf area

covered by virus in the two experiments was also roughly

the same. Given these observations, it is suspected that

virus in the form of cadavers is qualitatively different than

virus that has been purified. For example, it may be the

case that larvae avoid cadavers but are not repelled by

purified virus. In fact, in laboratory choice tests it has

been shown that larvae cannot distinguish leaf discs con-

taminated with purified virus from leaf discs that are

uncontaminated (V. D’Amico, unpubl. data). This or

other details of the behaviour of larvae may interact with

spatial structure to determine the transmission of this virus.

Moreover, in previous work, it was shown that non-linear-

ity in transmission may alternatively be explained by

heterogeneity in susceptibility (Dwyer et al., 1997). At the

time, the belief was that this heterogeneity in susceptibility

was due to heterogeneity in the dose required to infect a

larvae; additional work, however, has instead suggested

that heterogeneity in feeding rate is more important

(G. Dwyer, unpubl. data). The ultimate explanation for

non-linear transmission in the gypsy moth–virus interaction

is therefore likely to involve some combination of spatial

clumping and heterogeneity in behaviours such as feeding

rate or the ability to avoid virus-killed cadavers.

A deeper understanding of how spatial structure affects

the transmission of baculoviruses is necessary before the

effects of spatial clumping on the dynamics of the gypsy

moth–virus interaction can fully considered. For the time

being it is noted that the levels of non-linearity in transmis-

sion observed in these experiments, as measured by the

clumping parameter k, are sufficient to turn stable cycles

into stable equilibria in most models of insect–pathogen

interactions (Briggs & Godfray, 1996, Dwyer et al., 2000).

The non-linearity in transmission seen in these experiments

is thus sufficient to have a strong effect on the dynamics of

host–pathogen interactions; more generally, this work

shows that spatial structure and behaviour can play a key

role in such systems.
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