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abstract: Stochastic models are of increasing importance in ecol-
ogy but are usually only applied to observational data. Here we use
a stochastic population model to combine experimental and obser-
vational data to understand the colonization of old fields by monarch
butterflies Danaus plexippus. We experimentally tested for density
dependence in oviposition rates when predators were excluded, and
we measured predation rates under natural conditions. Significance
tests on the resulting data showed that both oviposition and pre-
dation were density dependent but could not show how oviposition
and mortality combine to determine egg densities in nature. We
therefore used our data to calculate the Akaike Information Criterion
to choose between a nested suite of stochastic models that differed
in their oviposition and mortality terms. When we simply fit the
models to the observational data, the best model assumed density
independence in both oviposition and predation. When we instead
first estimated the oviposition rate at low density from experimental
data, however, the best model included density dependence in ovi-
position, and a model that included density dependence in both
oviposition and predation performed nearly as well. This result is
consistent with our experiments and suggests that experiments can
enhance the usefulness of stochastic models in ecology.

Keywords: Asclepias syriaca, density-dependent immigration, density-
dependent mortality, Danaus plexippus, Akaike Information Crite-
rion, stochastic model.

Over the last few decades, recognition of the importance
of stochasticity in ecological processes has driven rapid
growth in the use of stochastic models in ecology (Bailey
1964; Nisbet and Gurney 1982; Dennis et al. 1991; Ren-
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shaw 1991; Morris and Doak 2002; Allen and Allen 2003;
Lande et al. 2003; Taper 2004). Many models, however,
are used only to analyze univariate, observational time
series data (but see Stacey and Taper 1992; Dennis et al.
1995). In contrast, field ecologists often attempt to explain
observational data using experiments, and the data in
question, whether experimental or observational, are often
multivariate (Hairston 1989). Here we attempt to combine
these two approaches by using experimental and obser-
vational data on the colonization dynamics of monarch
butterflies (Danaus plexippus) to parameterize stochastic
models. By using experimental data to estimate a key
model parameter and then fitting other model parameters
to observational data, we are able to show how predation
and oviposition combine to determine the dynamics of
monarch colonization.

In considering monarch colonization, our work ad-
dresses the importance of the relationship between dis-
persal and local interspecific interactions in determining
the distribution of organisms in space, an issue of fun-
damental importance in ecology (Tilman and Kareiva
1997; Law et al. 2000). Spatial structure and dispersal are
widely known to modulate competition (Pacala and Levin
1997; Holmes and Wilson 1998; Bolker and Pacala 1999)
and predation (Kareiva and Odell 1987; Ives et al. 1993;
Hochberg and Ives 2000) and can strongly influence mate-
finding success (Veit and Lewis 1996; Fujiwara and Caswell
2001; Knowlton 2001). Because monarchs recolonize
North America each summer (Brower 1995), and because
larvae are much less mobile than adults (Dethier 1959;
Dethier and MacArthur 1964; Jallow and Zalucki 2003),
local densities of monarch larvae are likely to be deter-
mined by the interplay between oviposition by mobile
adults and predation on sessile eggs. Because monarchs
actively select the host plants on which they oviposit (Zal-
ucki and Kitching 1982b; Zalucki and Suzuki 1987), in
preliminary natural history observations, we expected
monarch eggs to be clumped on the most suitable plants
(Stamp 1980). Instead, we observed that monarch eggs are
typically found by ones and twos per plant and only rarely
reach higher per plant densities. In our research, we there-
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fore asked, Why are monarch eggs so rarely found in
clumps?

In using both observational and experimental data to
address this question, we avoid the classic problem in spa-
tial ecology of attempting to infer mechanisms from ob-
servational data alone (Jones 1977; Pielou 1977; Pollard
et al. 1987; Singer and Thomas 1992; Stenseth et al. 1998).
Because our models are stochastic, they can easily be com-
bined with field data on monarch colonization to construct
likelihood functions, which in turn can be used in statis-
tical model choice criteria to measure the strength of evi-
dence for the mechanisms in each model (Royall 1997;
Taper 2004). Our data analysis efforts thus focus on using
data to choose between different mechanistic models, an
approach that has several advantages over tests of statistical
significance. First, rather than merely assessing whether
there is a statistically significant effect of a particular mech-
anism, we can directly quantify the strength of evidence
that our data provide for that mechanism relative to other
mechanisms. We are thus able to go beyond statistical
significance to consider biological significance. Second, the
models make probabilistic predictions and thus can be
used to forecast monarch colonization dynamics. Never-
theless, because the model choice approach requires that
we restrict ourselves to particular functional forms, for
example, to describe the effects of density on predation,
we also present the results of significance tests of general
effects. Significance tests have the complementary advan-
tage that they allow us to directly quantify the reliability
of our experimental results in the form of error proba-
bilities. These probabilities allow us to test whether we
have erroneously adopted our data as evidence for, or
against, a given mechanistic hypothesis (Mayo 1996, 2004).
Reassuringly, these tests agree with the results of our model
choice procedures.

The models that we use are based on hypotheses about
the mechanisms determining the dispersion of monarchs
in the field, which were in turn generated from a com-
bination of our own field observations and data from the
literature. For example, monarchs lay their eggs only on
milkweeds in the genus Asclepias, and their eggs are laid
singly rather than in masses (Zalucki and Kitching 1982b).
Some butterfly species are known to use visual (Traynier
1984) and chemical (Feeny et al. 1989) cues to avoid con-
familial or conspecific eggs (Rothschild and Schoonhoven
1977; Chew and Robbins 1984; Klijnstra 1986), thereby
preventing the accumulation of singly laid eggs on host
plants. Variability in preferences within species, however,
is large, and individual butterflies are known to vary in
their preferences for particular host plant characteristics
(Singer and Parmesan 1993). For monarchs in particular,
the response of individuals to oviposition stimulants (Baur
et al. 1998; Haribal and Renwick 1998) is partly influenced

by the species-wide preference for intermediate cardiac
glycoside concentrations (Zalucki et al. 1990), but there
are also strong individual preferences for particular plant
ages, heights, and conditions (Zalucki and Kitching
1982b). The wide dispersion of monarch eggs in the field
may thus simply reflect variation in host plant preferences
among individual females (Rothschild et al. 1978; Price
and Willson 1979). On the other hand, monarch eggs and
larvae are consumed by many predatory arthropods, in-
cluding ants (Calvert 1996), hemipterans, coccinelids, spi-
ders, wasps (Koch et al. 2003), lacewing larvae, and mites
(reviewed in Prysby 2004). If such predators act in a spa-
tially density-dependent manner by responding either di-
rectly to monarch density or indirectly to host plant dam-
age (Heinrich 1979; Bergelson et al. 1986; Bergelson and
Lawton 1988; Shiojiri et al. 2002), then predation would
tend to reduce spatial clumping, and so it could also ex-
plain the wide dispersion of monarch eggs.

We therefore asked, What is the importance of female
oviposition behavior relative to predation in maintaining
the wide dispersion of monarch eggs? In practice, an-
swering this question became an effort to determine the
importance of density dependence in oviposition and pre-
dation (Taper and Gogan 2002). Specifically, if individual
female monarchs have similar preferences for host plant
characteristics but avoid existing eggs, then oviposition
rates should be density dependent and should therefore
play an important role in maintaining wide egg dispersion.
Wide egg dispersion may alternatively be maintained by
density-dependent predation (De Moraes et al. 1998) or
by a combination of density dependence in both ovipo-
sition and predation. Finally, if oviposition rates are low
and density independent, then widely dispersed eggs may
simply reflect low oviposition and predation rates. This
latter scenario may arise from differences among individ-
ual females in host plant preferences.

To evaluate these different possibilities, we combined
observations, experiments, and models. We designed our
field experiments to detect density dependence in ovipo-
sition and egg predation in monarch populations in the
field. Specifically, we recorded oviposition and mortality
rates under natural conditions and used experiments to
measure monarch oviposition behavior at high egg density
and oviposition rates at low egg density. Because we were
able to track each individual egg and larva, we were able
to virtually eliminate observation error, a common source
of false positives in tests for density dependence in sto-
chastic population models (Shenk et al. 1998; McCallum
et al. 2000). This enhanced our ability to use models to
disentangle the mechanisms determining observed egg
densities (Hilborn and Mangel 1997; McCallum 2000).
Next, to make inferences about the presence of density-
dependent effects in our data and to infer the relative
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importance of oviposition behavior and predation in de-
termining monarch egg dispersions, we used stochastic
“immigration-death models.” These models produce
probabilistic population-level predictions from the prob-
abilities of immigration and mortality events (Jacquez
1996; Matis and Kiffe 2000). Furthermore, because our
experiments yielded data suitable for both univariate and
multivariate models, we were able to compare the merits
of the two in terms of parameterization effort versus in-
formation yield. In terms of the model classification
scheme of Cox (1990), we used mechanistic models de-
signed to explain observations in terms of specific pro-
cesses. Because we used likelihood to choose between these
models, our work represents an application of the principle
of scientific evidence contained in the law of likelihood
(Royall 1997, 2004).

Methods

Our field work was carried out using common milkweed
Asclepias syriaca in old fields in Allegan County, south-
western Michigan, near the Kellogg Biological Station at
approximately 42�N, 85�W. Asclepias syriaca is the most
common milkweed in the midwestern United States
(Hartzler and Buhler 2000) and is a preferred monarch
oviposition host (Malcolm et al. 1989; Wassenaar and
Hobson 1998). Our experiments thus took place under
typical conditions for monarchs in the midwestern United
States.

We carried out two complementary experiments. First,
in an oviposition experiment, we directly tested whether
female monarchs avoid existing eggs when ovipositing.
Second, in a colonization experiment, we compared ovi-
position rates between unmanipulated control plots and
experimental plots from which we removed eggs daily
(“egg removal” plots). The colonization experiment thus
yielded data on immigration rates at both natural egg den-
sities and low egg densities as well as on egg predation
rates at natural densities. We used our natural history ob-
servations and the results from the oviposition experiment
to guide the construction of a set of models that made
different assumptions about monarch colonization dy-
namics, and we used the data from the colonization ex-
periment to choose between these models.

As a model choice statistic, we used the Akaike Infor-
mation Criterion (AIC). The AIC can be viewed as a like-
lihood-based statistic that has been extended to allow for
consideration of multiple hypotheses or models (Taper
2004). The foundation of likelihood-based model choice
is the law of likelihood, which states that if the probability
of the data x under hypothesis A is greater than under
competing hypothesis B, symbolized as , thenP (x) 1 P (x)A B

the data provide more evidence for hypothesis A than for

hypothesis B. In practice, this law provides a strong ar-
gument in favor of the use of likelihood ratios as a measure
of the strength of the evidence in favor of one model over
the other (Royall 1997, 2004). Likelihood approaches are
appropriate in our research because we want to know not
simply whether a particular mechanism is operating, but
how important different mechanisms are relative to each
other.

To emphasize the usefulness of experimental data for
explaining observational data, we incorporated the AIC
into each of three different fitting methods. In the first
method, we simply estimated all the model parameters
from the observational control plot data and used the AIC
to choose the best model (Burnham and Anderson 2002).
In the second method, we first estimated the base im-
migration rate , the oviposition rate at zero egg density,IB

using the data from the experimental egg removal plots.
We then fixed at this experimental value, estimated theIB

remaining parameters from the control plot data, and re-
peated the AIC calculation to again choose the best model.
The difference between these two methods is that the first
attempts to estimate from plots in which the egg densityIB

was well above 0 while simultaneously estimating the other
parameters as well. In contrast, in the second method, we
estimated from plots in which the egg density was nearlyIB

0, thereby estimating under more appropriate conditionsIB

while reducing the number of parameters being estimated
from the control plots. The second method thus uses pseu-
dolikelihood to make it easier to distinguish the effects of
density-dependent oviposition or predation from those of
a low base immigration rate . Pseudolikelihood is knownIB

to work well when the uncertainty in the independently
estimated parameter is not too high (McCullagh and
Nelder 1989). Moreover, it is important to remember that
the control data set is larger than the experimental data
set, because the control data include both egg counts and
mortality and because there were more control plots than
experimental plots. Fitting the models simultaneously to
both the control and experimental data therefore gave the
same results as fitting the models to the control data alone
(K. L. S. Drury and G. Dwyer, unpublished data). Pseu-
dolikelihood in contrast gave us greater power to distin-
guish between models.

In the third method, we extended the second method
to allow for uncertainty in . In so doing, we developedIB

what is, to our knowledge, a new method of plotting model
uncertainty, which we call the model selection uncertainty
profile. To create this plot, we first bootstrapped values of

from our egg removal data, and then as in the secondIB

method we fit the remaining parameters to the data from
the control plots. Our response variable in this method
was the frequency with which each model was chosen as
the best model as a function of . To construct the modelIB



734 The American Naturalist

selection uncertainty profile, we therefore calculated ,D i

the difference between the AICc values for model i and
the best model, as a measure of the strength of the evidence
(Taper and Gogan 2002) in favor of each model. We then
plotted the for each model against to show how theD Ii B

strength of evidence in favor of each model varied with
.IB

Oviposition Experiment

Female monarchs that have only a single plant available
will lay ≈50 eggs/day on that plant (Altizer et al. 2004).
The fact that such densities are not observed naturally,
however, is not evidence in itself for egg avoidance, because
females take flight after laying each egg, a readily observ-
able alternative explanation. To directly test for this pos-
sibility, we performed an experiment in which we manip-
ulated the availability of egg-free milkweed plants for
individual caged females. Our cages were 1-m3, -32 # 32
mesh lumite cubes supported by aluminum frames. The
experimental female monarchs were collected locally from
our study area. The first step in the experiment was to
enclose an adult female for 24 h in a cage with one milk-
weed plant. On the following day, we removed the female
and counted the number of eggs on the plant, marking
all leaves that bore eggs using loops of grass (see “Colo-
nization Experiment”). Next, we rearranged the cage so
that it encompassed both the original milkweed with the
eggs on it and three other nearby milkweeds. Each of these
latter three plants had previously been excluded, and each
was confirmed to have no eggs. A new female was then
placed in the cage for 24 h and allowed to choose ovi-
position sites from among all four plants. We repeated the
entire experiment twice using entirely new butterflies and
plants each time. In this way, we were able to compare
the number of eggs laid on the plant that already had eggs
with the number laid on the plants that did not already
have eggs. In addition, we compared the number laid on
leaves that already had eggs with the number laid on leaves
that did not already have eggs.

Colonization Experiment

Our colonization experiment was designed to test for den-
sity dependence in monarch oviposition rates and egg
mortality rates. In this experiment, we created a 3 # 3
grid of contiguous -m plots, with each plot con-2 # 2
taining nine milkweed plants, and we randomly assigned
each plot to either the control treatment ( ) or then p 6
egg removal treatment ( ). At the beginning of then p 3
experiment, we searched all plants within the plots and
removed all monarch eggs and larvae. In the control plots,
we then allowed eggs to accumulate at natural rates for

the duration of the experiment. Each day, we tied a blade
of grass around the petioles of leaves bearing new eggs to
distinguish them as preexisting on subsequent days. In rare
cases when there was more than one egg on a leaf, we tied
more than one blade of grass so that all eggs had a cor-
responding marker. We used grass because it was a ubiq-
uitous component of the field. Indeed, the grass was often
taller than the milkweeds and entirely surrounded them,
suggesting that this technique had no effect on natural
oviposition processes.

We censused the eggs in our colonization experiment
at approximately 5 p.m. each evening. By that time, the
plots were shaded by nearby trees, and so by then the
adults that were typically present earlier in the day were
rare or absent. Our censusing activity therefore had little
effect on oviposition. Moreover, because control and egg
removal plots were randomly assigned within milkweed
patches, the disturbance caused by censusing affected all
plots equally and therefore did not create differences be-
tween the two plot types.

In a few instances, eggs hatched, and our grass markers
then served equally well to identify the resulting larvae,
because first- and even second-stage larvae or “instars”
rarely leave their natal leaf (K. L. S. Drury, personal ob-
servation). High mortality rates are not unusual for mon-
arch eggs (Zalucki et al. 1990), and during our 12-day
experiment nearly all mortality occurred at the egg stage.
Early instars that disappeared were counted among the
dead (Prysby 2004), and in the few instances when later
instars were involved, we counted them as lost if we could
not find them. Even when larvae are not visible, they leave
distinctive evidence of their presence in the form of char-
acteristic leaf damage and droppings, or “frass.” It was
therefore generally straightforward to relocate larvae unless
they had been eaten.

In the experimental egg removal plots, we removed all
new eggs from each plot on each of the 12 days of the
experiment. Although it is possible to simply remove an
egg and still leave the leaf intact, we instead chose to
entirely remove each egg-bearing leaf because of the pos-
sibility that eggs might leave behind nonvisual cues such
as pheromones (Roitberg and Prokopy 1981; Klijnstra
1986). The average number of leaves on plants in nearby
transects was 15.7 ( , ), so that roughlyn p 109 SE p 0.47
140 leaves were available per plot. Although anecdotal ob-
servations suggested that the removal of leaves had no
effect on oviposition, it is possible that it reduced ovi-
position rates slightly by reducing the absolute number of
oviposition sites or by simulating herbivory (Bergelson and
Lawton 1988), although mechanical herbivory is generally
less effective at inducing plant defenses than natural her-
bivory (Hartley and Lawton 1987; Agrawal 1998). Nev-
ertheless, one of our main conclusions from this experi-
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ment is that oviposition rates were higher in the egg
removal plots than in the control plots, and if leaf removal
did have an effect on oviposition, the result would almost
certainly have been a reduction in oviposition (Oyeyele
and Zalucki 1990). Because the point of the experiment
was to demonstrate higher oviposition in the experimental
plots, the error introduced by removing leaves therefore
had a conservative effect on our results and is unlikely to
have affected our conclusions. Leaf removal is also unlikely
to have increased oviposition rates, because the plants that
we removed leaves from were already selected by monarchs
for oviposition, and they prefer plants with intermediate
levels of defensive compounds (Oyeyele and Zalucki 1990).
If leaf removal increased the levels of these compounds,
they would at best remain as attractive or, more likely,
become less attractive if levels increased too much, a re-
sponse that would again have a conservative effect on our
results. Moreover, as we describe in “Results,” our ovi-
position experiment showed that females avoid eggs at the
scale of the leaf rather than at the scale of the whole plant,
suggesting that the effects of leaf removal in our coloni-
zation experiment were probably not strongly affected by
induced defenses at the scale of an entire plant. Similarly,
in other insect-plant interactions, it has been shown that
the act of oviposition (Hilker and Meiners 2002) or even
insect footsteps on foliage (Bown et al. 2002) can trigger
plant responses. The act of oviposition may therefore have
induced a defensive response, although we suspect that
any such response would have been less than that caused
by leaf removal, which again is unlikely to have affected
our conclusions. Additional monarch oviposition studies
are nevertheless needed to confirm this point.

In the control plots, in which eggs were not removed,
egg densities were instead reduced by mortality and hatch-
ing. Because eggs were marked, we were able to record
these losses with virtually complete accuracy because when
larvae hatch, they leave behind visible pieces of egg,
whereas eggs that are consumed by predators are com-
pletely removed. Although some small number of eggs may
have been removed by predators before we could mark
them, the number of predation events that we observed
between census events was small, and so such losses were
probably trivial. In any case, losses were the same for all
plots and treatments. In the control plots, we therefore
calculated the mortality rate on day t as the differencemt

between the number of eggs present on dayx t � 1t�1

minus the number of eggs present on day t:xt

m p x � x . (1)t t�1 t

Note that hatched eggs were recorded as being present if
the caterpillar was found. These data provided us with a
means of testing for density dependence in the egg pre-

dation rate. This is crucial because a slowing in the pop-
ulation growth rate of eggs with time could be due to
either density-dependent oviposition or density-depen-
dent predation.

Statistical Analyses: Significance Tests

Our main statistical emphasis was on using our data to
quantify the strength of evidence in support of different
mechanistic models of monarch colonization by calculat-
ing the AIC for each of several models. In addition, how-
ever, we used significance tests to test whether particular
mechanisms should be included in our models. To test
whether existing eggs affected oviposition decisions in the
oviposition experiment, we used a test that compared2x

the number of eggs on egg-bearing plants or leaves with
the number of eggs on non-egg-bearing plants or leaves.
To test for density dependence in the egg mortality data
and thus for density-dependent predation, we carried out
a Spearman’s rank order correlation test on the relation-
ship between per capita mortality in each plot, ,m /xt t�1

and the number of eggs, . Finally, to test for differencesxt�1

in the rate of oviposition into control and egg removal
plots, we used repeated-measures ANOVA to compare the
number of eggs in the experimental plots with the number
of eggs in the control plots over time.

Statistical Analyses: Mechanistic Models

After an initial colonizing period of 4 days, the average
number of monarch eggs and/or larvae in our unmanip-
ulated control plots was 6.75 ( ). In populationsSE p 0.52
this small, the chance events known as “demographic sto-
chasticity” can play an important role in determining the
density of eggs. We therefore used models that explicitly
take demographic stochasticity into account. Population
size in conventional deterministic models is usually in-
terpreted as a representation of the average across sto-
chastic realizations. In contrast, stochastic models like ours
generally keep track of the entire probability distribution
of population sizes. Such models can be expressed most
compactly by using the Kolmogorov forward equations,
which in our case take the general form (Matis and Kiffe
2000)

dp(x, y, t)
p I(x � 1)p(x � 1, y, t)

dt

� (I(x) � D(x))p(x, y, t) (2)

� D(x � 1)p(x � 1, y � 1, t).

In the jargon of stochastic modeling, equation (2) is known
as an “immigration-death model,” because immigration
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and death are the two processes assumed to affect
, the probability that there are x eggs and y cu-p(x, y, t)

mulative deaths at time t. We follow both egg counts and
cumulative mortality because doing so provides greater
power to resolve oviposition and mortality processes than
would following counts alone. This is a crucial distinction
because, for the observational data sets to which such
models have usually been applied, counts are usually all
that is available. Consequently, to highlight the increased
statistical power that results from using both count data
and mortality data, we used equation (2) first with counts
only and second with both counts and mortality. Because
in our case immigration is equivalent to oviposition,

is the probability per unit time that a monarch laysI(x)
an egg. The parameter is the death rate, the proba-D(x)
bility per unit time that a monarch egg is eaten by a
predator. Note that both immigration and death are func-
tions of the number of eggs x that are present. To test
alternative hypotheses about the underlying mechanisms
generating our data, we compared different model forms
for both immigration and death. The density-dependent
oviposition rate is

�axI(x) p I e , (3)B

which collapses to the density-independent form I(x) p
when . When , then the probability of anI a p 0 a 1 0B

oviposition event will decline as the number of eggsI(x)
in the plot increases. The density-dependent death rate is

D(x) p x(b � gx), (4)

which collapses to the density-independent form D(x) p
when . A density-dependent death rate then im-bx g p 0

plies that the per capita probability of a predation event
increases with density x. This is essentially equivalent to
assuming that predators concentrate their efforts in areas
in which eggs are clumped, so per capita egg mortality is
higher at higher egg densities. Although, strictly speaking,
the model does not require , in practice we expecta, b ≥ 0
that they will be. Density-dependent mortality as in equa-
tion (4) could alternatively be expressed as an exponential,
similar to equation (3) but with opposite sign. We have
instead chosen a quadratic because of its similarity to the
well-known logistic equation.

Because equation (2) describes a set of ordinary differ-
ential equations, we were able to solve for usingp(x, y, t)
a standard numerical solution technique for differential
equations, a fourth-order Runge-Kutta algorithm (Press
et al. 2002). A practical problem with equation (2), how-
ever, is that it is infinite in each dimension. This is because
there may be a nonzero probability of unrealistically high
numbers of eggs and deaths, even if such numbers are

highly unlikely. This problem can be solved by truncating
the system of equations at some large upper bounds,

and , before solving (Matis and Kiffe 2000). If thex ymax max

upper bounds are large enough, the resulting numerical
solutions will closely approximate the true solutions to
equation (2). In practice, we discovered that the best-
fitting parameters gave values of that approachedp(x, y, t)
0 quite rapidly with increasing x and y. For example, the
largest cumulative number of deaths was 21 in plot 2 on
day 12, and so truncating our system of equations at

gave best-fitting parameter values thatx p y p 25max max

were almost identical to the values that we found by in-
stead truncating at . The system ofx p y p 30max max

equations, however, of course required substan-25 # 25
tially less computing time, and so that is the bound that
we used in practice.

Because the model predicts the entire distribution of
eggs and cumulative deaths over time, the model predic-
tion can be used in a likelihood function to quan-p(x, y, t)
titatively compare different model forms to the data.
Specifically, suppose that our likelihood function is

, where x and y are vectors of eggs and cumu-L(vF(x, y))
lative mortality indexed by time. Note that the data are
thus constant in the sense that they have already been
observed. The value of the likelihood is then determined
by the values of the parameters, as expressed by the vector
of parameter values v; in particular, the parameters can
be varied until the best-fit values are found (Edwards
1992). We can then write asL(vF(x, y))

n T

L(vF(x, y)) p p(x , y Fv, x ). (5)�� i, t i, t i, t�1
ip1 tp1

Here, i is the plot number, n is the total number of plots,
t is the census day, and T is the number of days in the
experiment. Also, is the observed number of eggs inxi, t�1

plot i at the previous day’s census, day . We thust � 1
write to show that we use the model top(x , y Fv, x )i, t i, t i, t�1

iterate forward from the observed number of live eggs
in plot i at the previous census day to the numberx t � 1i

of live eggs and dead eggs in that plot on censusx yi, t i, t

day t. This procedure explicitly takes autocorrelation be-
tween and into account, whereas simply iteratingx xt�1 t

forward from does not (Dennis and Taper 1994).t p 0
Also, note that we can vary the form of the model to
consider different assumptions about oviposition and
mortality, notably whether oviposition and mortality are
density dependent, according to equations (3) and (4),
respectively. Finally, notice that in we dop(x , y Fv, x )i, t i, t i, t�1

not condition on because eggs and mortalityy x yi, t�1 i, t i, t

on day t are assumed to be independent of mortality
on day .y t � 1i, t�1
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Use of equation (5) as written assumes that the processes
in our plots were spatially independent. Our natural his-
tory observations of monarch egg dispersion suggested
that it is unusual to find more than a few eggs per plant
but also that the occurrence of eggs on one plant did not
affect the probability that we would find eggs on nearby
plants. More importantly, if our plots were strongly spa-
tially correlated, the eggs that were present in our control
plots also would have affected the adjacent experimental
egg removal plots, thereby eliminating any treatment ef-
fects. The fact that we observed treatment effects suggests
that the assumption of independence is justified. More
generally, if the assumption had been violated, we could
have modified our models to allow for dispersal between
plots while otherwise using the same model-fitting
methods.

Having formulated a likelihood function for our data,
we then compared the density-dependent and density-
independent forms of immigration and mortality by min-
imizing the negative log likelihood of equation (5) usingL
a nonlinear-fitting routine, the downhill (or Nelder-Mead)
simplex algorithm (Press et al. 2002). In practice, this fit-
ting routine chooses a vector of parameters, solves for

for each plot on each census day ac-p(x , y Fv, x )i, t i, t i, t�1

cording to equation (2), calculates the likelihood according
to equation (5), and then repeats the process for a new
set of parameter values. By systematically varying the pa-
rameter values, the algorithm eventually finds the mini-
mum of the negative log likelihood, which occurs at the
same parameter values as the maximum of the likelihood
function. To ensure that the simplex did not simply find
a local minimum, we repeated the procedure using a grid-
search algorithm instead of the downhill simplex and ob-
tained very similar results.

Having calculated the maximum likelihood for each
model, we then compared the models using the corrected
AICc, which provides an objective means of ranking can-
didate models that have different numbers of parameters
(Burnham and Anderson 2002). The AICc for the ith
model, , is calculated by the formulaAi

2K (K � 1)i iA p 2L(vF(x, y)) � 2K � . (6)i i i (n � K � 1)i

In equation (6) is the number of parameters in modelKi

i, n is the number of data points, is the data, and(x, y)
is the vector of parameters for model i. This form isvi

termed “corrected” because it allows for small sample sizes,
meaning cases for which (Burnham and An-n/K ! 40i

derson 2002).
One of the useful features of the AICc is that one can

go beyond merely choosing the best model to quantify the
relative support that the data provide for each model using

Akaike weights. If is the difference between the ithD i

model and the best model, then the weight for the ithwi

model is

exp (�D /2)iw p . (7)i R� exp (�D /2)rrp1

The can thus be interpreted as a measure of the relativewi

support, scaled between 0 and 1, of the ith model given
the data and the other candidate models (Burnham and
Anderson 2002). Moreover, the ratio of the weight of
model i to the weight of the best model provides a measure
of the support for model i relative to the best model. An
important point is that when the best-fit values of the
density dependence parameters a, b, and g are 0, the data
provide no evidence for density-dependent effects, and the
more elaborate models collapse to density-independent
models.

For our purposes, the advantage of the AIC approach
is that it allows us to quantify the strength of evidence
that our data provide for each model, through the sta-D i

tistic, the difference between the AICc for the ith model
and the AICc for the best model. The has a usefulD i

connection to Royall’s (1997) strength-of-evidence ap-
proach in the following sense. Royall argued that the ratio
of the likelihoods of two hypotheses provides a useful mea-
sure of the strength of evidence for one hypothesis over
another. Because the is the difference of two log like-D i

lihoods, it is equivalent to the log of the ratio of the two
likelihoods, except that each likelihood is adjusted to in-
clude a penalty term based on how many parameters it
requires and how many data points are available to esti-
mate the parameters. The is thus effectively an AIC-D i

based measure of Royall’s strength of evidence (Taper
2004). Values of are said to provide strong evidenceD ≥ 2i

for one model over another, while values of areD ≥ 5i

said to provide very strong evidence (Taper and Gogan
2002).

We can thus use values to quantify the strength ofD i

evidence for different processes. For example, we can eval-
uate the evidence for density dependence in oviposition
and mortality by comparing the values for models thatD i

include density dependence with the values for modelsD i

that do not. Note that while the results of the oviposition
experiment inform us about monarch behavior, by itself
that experiment could not tell us about the importance of
density-dependent oviposition relative to density-depen-
dent mortality in determining the dispersion of monarch
eggs. More generally, significance tests allow us to test for
the occurrence of either density-dependent oviposition or
mortality but do not provide information about the rel-
ative magnitudes or even co-occurrences of these pro-
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Figure 1: Monarch oviposition data from an old field in southwest Michigan between July 23 and August 3, 2001. a, Mean number of eggs and/
or larvae (�1 SE) in six control plots accumulating under natural conditions. b, Precipitation (primary Y-axis) and the mean of temperature readings
during each day (secondary Y-axis) as recorded by the Kellogg Biological Station Long-Term Ecological Research site located at 42�24�33�N,85�22�18�W,
approximately 16 km from the field site. Neither precipitation ( ) nor temperature ( ) was significantly correlated with ovipositionP p .19 P p .14
rates in egg removal (uncrowded) plots. c, Mean number of new eggs (�1 SE) per day in six control plots and in three experimental (egg removal)
plots from which all eggs were removed daily.

cesses. Comparing the values of models with variousD i

combinations of density-dependent oviposition and pre-
dation, however, provides a quantitative comparison of
the evidence for each and hence allows for inferences about
the relative importance of each process.

Estimating the Base Immigration Rate

Our three methods of fitting the models to the data cor-
respond to estimating the base immigration rate in threeIB

different ways. First, we simply fit to the control plotIB

data along with the other parameters in the model. Second,
we took advantage of our experimental egg removal data
by first using the average value of from the egg removalIB

plots as an estimate of the base oviposition rate and then
fitting the remaining parameters, a, b, and g, to the ob-
servational data. Third, we took uncertainty in intoIB

account by bootstrapping 150 values of (Efron and Tib-IB

shirani 1993) and then refitting the model to the control
plot data for each new value of . To bootstrap , weI IB B

repeatedly sampled egg counts from our data until we had
as many counts as in the original data, calculated a value
of based on the sample, and repeated 150 times.IB

Results

Oviposition Experiment

In the first trial, the first female, which had access to only
one milkweed, laid 46 eggs on 16 of the 27 leaves available.
When that female was removed and the three additional
egg-free plants were included, the second female laid a
total of 45 eggs. Of these, none were laid on leaves with
existing eggs, although seven of the 45 were laid on egg-
free leaves of the first female’s plant. The x2 tests showed
that this second female did not distinguish between the
first, egg-bearing plant and the egg-free plants ( 2x p

, , ) but that she did prefer leaves with-1.06 df p 1 P p .30
out eggs ( , , ). In the second2x p 6.86 df p 1 P p .009
trial, the first female, which again had access to only one
milkweed, laid 53 eggs on eight of the 15 available leaves.
The second female, which again had access to three ad-
ditional egg-free plants, then laid 62 eggs, none of which
were laid on leaves with existing eggs, although 12 were
on egg-free leaves of the original plant. The x2 tests showed

that, like the first female, this second female did not dis-
tinguish between plants with eggs and plants without eggs
( , , ) but did distinguish between2x p 2.14 df p 1 P p .14
leaves with eggs and leaves without eggs ( ,2x p 10.19

, ). Our direct test for density dependencedf p 1 P p .001
in oviposition thus suggested that female monarchs prefer
milkweed leaves that do not already have eggs on them.

Colonization Dynamics

In our control plots, where both oviposition and predation
occurred, the number of eggs per plot appeared to saturate
over time (fig. 1a) as extremely high egg predation over
the 3–5-day egg stage balanced colonization by new eggs.
Figure 1b shows precipitation and average daily temper-
ature during the 12 days of the study from July 23 to
August 3, 2001. Visual comparison of the oviposition and
weather data suggests that temporal fluctuations in tem-
perature and rainfall are not likely to provide explanations
for the temporal pattern of oviposition. Spearman’s rank
order correlation tests for egg removal data and temper-
ature ( , , ) and precipitationr p �0.51 n p 12 P p .09
( , , ) are consistent with thisr p �0.24 n p 12 P p .46
interpretation, as are linear regressions (temperature:

; precipitation: ). Repeated-measuresP p .15 P p .19
ANOVA confirmed that the oviposition rate in the egg
removal plots was significantly higher than the rate in the
control plots ( , , ; see fig. 1c),F p 5.631 df p 1, 11 P p .031
suggesting that oviposition was density dependent, as in
our oviposition experiment. In addition, however, a Spear-
man’s rank order correlation test between per capita mor-
tality rate and existing egg density (fig. 2) showed that
there was a statistically significant effect of density on per
capita mortality ( , , ), suggestingr p 0.376 n p 58 P ! .002
that predation was also density dependent. This effect is
all the more striking because our analyses used data re-
corded at the scale of our 4-m2 plots, whereas butterfly
egg predators presumably search at the scale of individual
plants. Note that the large variance in per capita mortality
at small population sizes in figure 2 (e.g., at x(t � 1) p

and 4) is expected, because at such population sizes each2
individual that dies represents a large proportion of the
population. Chance variation in the fates of individuals
thus leads to a larger variation in mortality rates at smaller
population sizes than at larger population sizes.
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Figure 2: Per capita mortality (circles) in each plot between day and day t versus egg number per plot on day . Multiple per capitat � 1 t � 1
mortality values at a given egg count are indicated by a slight offset in the horizontal direction. The occurrence of a small number of high mortality
rates at low density is expected because at small population sizes, each mortality event represents a larger proportion of the population. Also, those
few high mortality rates are more than compensated for by multiple zero values at low densities, which is illustrated by the triangles showing median
per capita mortality for each egg number.

Fitting the models to the observational egg count data
from the control plots, however, produced only weak sup-
port for density dependence in either oviposition or pre-
dation (table 1). Moreover, notice that in table 1, the neg-
ative log likelihoods in this case were the same for all
models. This is because the models fit to the one-dimen-
sional, eggs-only data almost always collapsed to the sim-
ple, density-independent oviposition/density-independent
mortality model. That is, for both the best-fitting density-
dependent oviposition model and the best-fitting density-
dependent oviposition/density-dependent predation model,
the parameters affecting density dependence were near 0.
Each model was thus effectively reduced to the density-
independent model, and so the strength of evidence for
density-dependent oviposition or density-dependent pre-
dation in both cases is effectively 0. The method used to
calculate the base immigration rate had no effect (tableIB

1). The estimate of the immigration rate (see table 2)
obtained by fitting to the control data was almost cer-IB

tainly an underestimate, because when we bootstrapped
from the egg removal data, for only 6% of the boot-IB

strapped base immigration rates did the one-dimensional
data require nonlinear immigration and mortality to ex-
plain the data in the control plots. This result is in stark
contrast to our experimental results.

In contrast, fitting the models to the two-dimensional
data set, which includes both egg counts and cumulative
mortality, provided much more support for density-
dependent effects, especially when we used an independent
estimate of the base immigration rate . First, however,IB

we simply fit , as well as the other parameters, to theIB

control data. In that case, the model with density-inde-
pendent oviposition and predation provided the best ex-
planation, but the model with density-independent ovi-
position and density-dependent predation performed
nearly as well. Again, however, the density-dependent ovi-
position parameter was effectively 0 in all models, and so
the density-dependent oviposition models collapsed to the
density-independent oviposition models. When we instead
used an independent estimate of , by calculating it fromIB

the experimental egg removal plots, the best-fitting model
instead included density-dependent oviposition and
density-independent predation. Moreover, for the model
that included density dependence in both processes, the

value, the difference in AICc from the best model, wasD i

only 1.24. The strength of evidence against the combi-
nation of density-dependent oviposition and density-de-
pendent predation was therefore quite weak. The valuesD i

for the models without density dependence in oviposition
were in contrast very high (table 1), showing that the
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Table 1: Results of one- and two-dimensional model fitting for univariate (egg counts only) and bivariate (egg
) monarch colonization datacounts � mortality

Data and estimateIB

Density-dependent
oviposition

Density-dependent
predation K L Di Akaike weight wi

Egg counts only:
Fit to data No No 2 146.11 a .56

Yes No 3 146.11 2.16 .19
No Yes 3 146.11 2.16 .19
Yes Yes 4 146.11 4.42 .06

From experiments No No 1 156.76 a .55
Yes No 2 156.76 2.12 .19
No Yes 2 156.76 2.12 .19
Yes Yes 3 156.76 4.3 .07

Egg :counts � mortality
Fit to data No No 2 200.93 a .39

Yes No 3 200.93 2.18 .13
No Yes 3 199.94 .2 .36
Yes Yes 4 199.94 2.44 .12

From experiments No No 1 229.23 11.14 .003
Yes No 2 222.60 a .65
No Yes 2 228.70 12.19 .002
Yes Yes 3 222.13 1.24 .35

Note: of parameters including error variance, log likelihood, between the AICc of each model andK p number L p negative D p differencei

the AICc of the best model.
a Lowest AICc value.

Table 2: Best-fit parameter values for the one- and two-dimen-
sional models

Dimensions and
model â b̂ ĝ Akaike weight

One dimension:
DI-DI a .3359 a 1.0

Two dimensions:
DD-DI .049 .169 a ≈.65
DD-DD .049 .122 .0228 ≈.35

Note: Base immigration rate was estimated from the experimental data

( ), and the remaining parameters a, b, and g were estimated fromI p 2.53B

the control plot data. independent, dependent.DI p density DD p density
a Not included.

strength of evidence against density-independent ovipo-
sition was strong. The combination of the two-dimen-
sional data plus an independent, experimentally derived
estimate of the base immigration rate thus provided strong
support for density-dependent oviposition and modest
support for density-dependent predation. Note that, al-
though a test on the mortality data alone suggested that
there was a statistically significant density-dependent pre-
dation effect, the results of the two methods of analysis
are not necessarily contradictory. This is because the model
fitting instead attempts to quantify the importance of
density-dependent predation for the control plot data,
rather than simply to determine whether the hypothesis
of no density-dependent predation can be rejected. Our
overall conclusion is thus that, although there may be a
statistically significant effect of density on predation, the
effect appears to be less important biologically than
density-dependent oviposition.

These conclusions were affected only slightly when we
used bootstrapping to take into account the uncertainty
in the experimental base immigration rate . The top ofIB

figure 3 shows the support, based on Akaike weights, for
each model versus the bootstrapped values of the base
immigration rate . Over the lowest 16% of the range ofIB

bootstrapped values, the density-independent oviposi-IB

tion/density-independent predation model was the best,
but over the remaining 84% of the range, the density-
dependent oviposition/density-independent predation

model was the best, while the density-dependent preda-
tion/density-dependent oviposition model performed
nearly as well. Unlike the AIC differences , however,D i

Akaike weights are not associated with objective rules
about the strength of evidence (Taper and Gogan 2002).
The bottom of figure 3 therefore instead depicts what we
call the model selection uncertainty profile, which shows
how for each model varies with . This figure showsD Ii B

that, unless is substantially lower than the value cal-IB

culated from the experimental plots, there is strong to very
strong evidence in support of models with density-depen-
dent oviposition. At very low base oviposition rates, how-
ever, that density dependence is not necessary to explain
the observed egg density. In addition, comparison of the



Figure 3: Top, plot of Akaike weights for each model superimposed on the histogram of bootstrapped base immigration rates ( ). For any givenIB

value of along the X-axis, the Akaike weights (circles, asterisks, diamonds, squares) sum to 1 across models. -independent immigrationI DII p densityB

(oviposition), -dependent immigration, -independent mortality, and -dependent mortality. LowerDDI p density DIM p density DDM p density
values of give more support to density-independent immigration models because nonlinearities were not needed to explain the data. The starIB

indicates the mean of our experimental base immigration data from the egg removal plots. Bottom, the model selection uncertainty profile: values,Di

the difference between the AICc score for each model and the best model, superimposed on the histogram of bootstrapped base immigration rates
; is considered to be strong evidence, while is considered to be very strong evidence.I D ≥ 2 D ≥ 5B i i



Stochastic Models and Experiments 743

top and bottom of figure 3 shows that the lowest values
of for which there is strong evidence for density de-IB

pendence ( ) are also the values for which the AkaikeD ≥ 2i

weights for the density-dependent models exceed those of
the density-independent models.

To quantitatively show the model fit, in figure 4 we have
plotted the data along with output for the best model (table
2), which includes density dependence in oviposition but
not mortality and which uses our estimate of the base
immigration rate from the experimental data. Figure 4aIB

shows the ( ) pairs from our data along with thex , xt t�1

ninety-fifth percentile contours of the marginal distribu-
tion of for the model. Said differently, the modelx Fxt�1 t

contours are the middle 95% of the sum, across all mor-
talities, of the probability of each possible egg number at
time , given that there were x eggs at time t. Similarly,t � 1
figure 4b shows the ( ) pairs that represent egg lossx , mt t

numbers between time t and time , given x eggs att � 1
time t. The model prediction lines are again ninety-fifth
percentile contours of the marginal distribution, with the
difference that each marginal mortality value is summed
across all possible egg numbers . The figure thus showsxt

that the best model is able to explain most of the variability
in the data, in the sense that only a few data points are
outside the ninety-fifth percentile contours of the model.

To compare the shape of the predicted and observed
trajectories of eggs and mortality, in figure 5 we have plot-
ted the mode of the best-fit model predictions, along with
the sixty-seventh and ninety-fifth percentile contours,
against the data for the control plots. As in figure 4, the
model again includes density dependence in oviposition
but not predation, and base immigration was againIB

calculated from the experimental data. Although in our
fitting routines we used the model only to extrapolate from
one day to the next, here we extrapolate from the zero
eggs/zero mortality conditions (i.e., ) at thex p y p 00 0

beginning of the experiment to the full distribution of eggs
and cumulative mortality events at the end of the exper-
iment. To distinguish among plots, each data point consists
of a numeral that corresponds to a particular plot number.
The trajectory of these plot numbers through the egg count
and cumulative mortality space and time reflects the ac-
cumulation of eggs and mortality events. Because here we
are extrapolating over a comparatively long interval of
time, we do not expect all of the data points to fall inside
the contour lines of the model predictions. Nevertheless,
the model approximately reproduces the average behavior
of the plots, even though we did not fit the data in such
a way as to average the data over time. To see this, one
can trace the trajectory of each field plot by following that
plot’s number across time, while comparing the location
of the plot number to the mode of the model prediction
(the solid circle) along the way. At first, both the individual

plots and the mode of the model increase along the egg
number axis as the first colonization events occur. Even-
tually, however, data and model mode also begin to move
along the mortality axis (Y-axis) as mortality events ac-
cumulate. The important points are thus that the trajec-
tories of different plots follow roughly similar paths and
that these paths are qualitatively similar to the model pre-
dictions. These qualitative similarities over longer time-
scales suggest that the model captures important features
of monarch colonization dynamics, and they give us con-
fidence in the functional forms of density dependence in
the model.

Discussion

Experimental Data, Stochastic Models,
and Scientific Epistemology

Methods for analyzing univariate time series data that rely
on stochastic population models are common in the eco-
logical literature. Nevertheless, such methods have often
provided only limited insight into detailed ecological
mechanisms (den Boer and Reddingius 1989; Ellner and
Turchin 1995; Stenseth et al. 1998; McCallum 2000; Tur-
chin and Ellner 2000; Turchin 2002), albeit with notable
exceptions (Dennis and Taper 1994; Zeng et al. 1998; Den-
nis and Otten 2000; Taper and Gogan 2002). It is thus not
surprising that our efforts to choose between models using
only our egg time series data likewise failed to identify the
mechanisms that determine monarch colonization. Spe-
cifically, when we fit the one-dimensional model to the
control plot oviposition data, the density-independent ovi-
position/density-independent mortality model received
the most support, irrespective of how we calculated the
base immigration rate . Our oviposition experiment,IB

however, suggested that monarchs avoid conspecific eggs,
suggesting in turn that oviposition is indeed density de-
pendent. Consequently, when we instead fit the models to
the bivariate data, which included both egg counts and
mortality counts, the resulting best-fit values of the
density-dependent immigration parameter a and the den-
sity-dependent predation parameter g both increased,
while the density-independent mortality term b decreased.
With the addition of an independent estimate of the base
immigration rate , the support for the fully density-IB

independent model dropped to almost 0, and the only
models with much support were the density-dependent
oviposition/density-independent mortality model and the
density-dependent oviposition/density-dependent mortal-
ity model (see table 1). Although the former model was
the best, the evidence against the latter was weak, sug-
gesting that the data provide strong support for density-
dependent oviposition and modest support for density-



744 The American Naturalist

Figure 4: Single-day output of the best immigration-death model compared with the monarch egg and mortality data in the control plots. This
model includes density dependence in oviposition but not predation and uses an estimate of the base immigration rate from the egg removal plots.
a, 95% confidence intervals of model predictions for the marginal distribution of egg number at time versus egg number at time t witht � 1
observed values and a one-to-one line of no effect. Multiple observations at the same value are slightly offset in the horizontal direction. For small

, model predictions are largely above the no effect line, while for large , model predictions are largely below the no effect line. b, 95% confidencex xt t

intervals of model predictions for the marginal distribution of mortality between t and , given and observed mortality.t � 1 xt

dependent mortality. It is important to recall that evidence
is necessarily comparative, so arguably we cannot abso-
lutely conclude that immigration and/or predation are
density dependent. Instead, we conclude that there is more
support for density-dependent than for density-indepen-
dent processes and that this support is evidence for the
mechanisms embodied in the density-dependent models
(Taper and Lele 2004). Bootstrapping gave roughly sim-IB

ilar results but slightly less strong support for density-
dependent effects, because some fraction of the boot-
strapped values were small enough that nonlinearity wasIB

not needed to explain egg densities.

The two key pieces of data providing inferential power
to our analysis were thus the experimentally estimated base
immigration rate and the mortality data, the secondIB

dimension of our observational data. Without an inde-
pendent estimate of , low values of the fit parameterIB

were sufficient to explain egg densities. Without mor-IB

tality data, even with an independent estimate of , highIB

linear mortality provided the best explanation for egg den-
sities. This result was misleading, however, because our
experiments suggested that both oviposition and mortality
were density dependent. On the other hand, even with the
mortality data, our model selection results did not match
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Figure 5: Long-term output of the best immigration-death model. The model is the same as in figure 4, but here we use it to predict the distribution
of eggs and mortality over the entire 12 days of the oviposition experiment instead of just one day at a time. The solid circle indicates the model,
and the lines indicate the sixty-seventh and ninety-fifth percentiles (the sixty-seventh percentile circle is of course always smaller than the ninety-
fifth). The location of the values of eggs and mortality for each plot are shown by locating the plot number at the appropriate point on each graph.
Because the model is here making a relatively long-term prediction, we do not expect close agreement between model and data. Instead, the main
point is simply that the mode of the model follows a trajectory through time that is qualitatively similar to the trajectories of the individual plots.

our oviposition experiment and correlation results unless
we used an independent estimate of .IB

Our model-fitting efforts thus complemented the results
of our significance tests. These tests revealed statistically
significant effects of density on both oviposition and per
capita mortality. Nevertheless, visual inspection of the data
suggests that the effect of density on oviposition (fig. 1c)
was quite strong but that the effect of density on mortality
was weak (fig. 2). The effects of density-dependent pre-

dation therefore appear to be weaker than those of density-
dependent oviposition. The model identification results
provided additional support for this conclusion, in that
the model with density dependence in both oviposition
and predation received less support than did the model
with density dependence in oviposition only.

It is instructive to consider the path of inference leading
to our conclusions. First, our natural history observations
suggested that monarch eggs are typically found at a rate
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of one or two per plant, with most plants having none.
We rarely found any plants with larger numbers of eggs,
and when we did, we found no obvious, consistent char-
acteristics that made those plants preferable for oviposi-
tion, such as plant height, number of leaves, developmental
stage, distance to nearest neighbor, or presence or absence
of other arthropods (K. L. S. Drury, unpublished data).
We therefore hypothesized that ovipositing female mon-
archs avoid existing eggs, a hypothesis for which there is
at least anecdotal evidence in the literature (Rothschild et
al. 1978; Zalucki and Suzuki 1987; Pilson and Rausher
1988; Calvert 1999). This hypothesis motivated our ovi-
position experiment, in which we found that, under ar-
tificial conditions, females do indeed avoid existing eggs.
The importance of this phenomenon under natural con-
ditions and its importance relative to predation were nev-
ertheless both uncertain. We therefore carried out our col-
onization experiment, which included predation and
allowed for natural conditions. The data from our control
plots, in which eggs accumulated and were lost according
to natural processes, suggested that per plant egg density
did appear to saturate as if females were indeed avoiding
already laid eggs. Nevertheless, it was possible to explain
the data from the control plots using a model with no
density dependence, leading to a best-fit value of the base
immigration rate that was quite low compared with ourIB

experimental estimate. Allowing for mortality data as well
gave some support for density-dependent processes, but
that support was extremely weak. Indeed, the model fitting
provided strong support for density dependence only when
we used the experimental egg removal data to estimate the
base immigration rate. The combination of observations,
experiments, and models thus led to a much deeper un-
derstanding of the processes underlying the dynamics of
colonization in our control plots than any one approach
could have produced alone (Scheiner 2004).

Monarch Oviposition Behavior

The results of our oviposition experiments and our model
selection procedures together suggest that monarchs avoid
existing eggs when seeking oviposition sites. Monarchs
therefore provide an example of an open population with
space-limited recruitment (Hyder et al. 2001), with col-
onization and mortality governed by the density of existing
eggs and emigration occurring after pupation. The balance
among these processes suggests a roughly constant local
monarch density, a pattern that we have observed in many
milkweed patches. This is consistent with our intuition,
because monarchs possess a suite of characteristics that
make them well suited for laying single, widely dispersed
eggs. Specifically, monarchs are long-lived for butterflies
(Zalucki 1981), they often fly great distances (Ries and

Debinski 2001), they oviposit on a common and widely
dispersed host plant (Hartzler and Buhler 2000), and the
oviposition period lasts for up to 45 days (Oberhauser
1997), although the oviposition period is often far briefer
in Australia (Zalucki and Kitching 1984).

Our results are also in agreement with the literature on
monarch ecology. Many authors have commented on the
rarity of monarch eggs in milkweed patches (Zalucki and
Suzuki 1987; Malcolm et al. 1989; Van Hook and Zalucki
1991; Calvert 1999). Indeed, larvae are so rare that Price
and Willson (1979) found no evidence that monarchs exert
any selective pressure as consumers of milkweed. Expla-
nations for the proximate cause of this sparse egg disper-
sion, however, have mostly focused on the importance of
host plant foliage quality. For example, as we have de-
scribed, host plants, including milkweeds, vary in quality
(Malcolm et al. 1989; Zalucki et al. 1990; Singer and Par-
mesan 1993; Singer and Lee 2000), apparency (Floater and
Zalucki 2000), and concentration of oviposition stimulants
(Zalucki and Kitching 1982a; Haribal and Renwick 1998).
Although Asclepias syriaca grows in clonal patches (Wilbur
1975; Hartzler and Buhler 2000), the chemical composi-
tion of ramets within a clone may vary in response to local
environmental conditions such as soil type, moisture, and
herbivory history (Price and Willson 1979), which mon-
archs assess through chemoreceptors on their feet and an-
tennae (Baur et al. 1998; Haribal and Renwick 1998). Even
within a host plant species of suitable chemical compo-
sition, monarchs discriminate based on patch size, plant
density, plant age (Zalucki and Suzuki 1987), and location
within the patch (Zalucki and Kitching 1982b). Moreover,
preferences for host plant attributes sensu Singer (2000)
vary among individual females (Singer and Parmesan
1993; Kuussaari et al. 2000; Hanski and Singer 2001) and
are context dependent (Rothschild and Schoonhoven
1977; Singer and Thomas 1992). These individual pref-
erences may therefore partially explain the lack of clump-
ing among monarch eggs. Our data, however, also suggest
that active egg avoidance is an important part of monarch
oviposition behavior, a type of “herbivore offense” that
must be understood along with the more familiar plant
defenses in order to understand herbivore-plant dynamics
and coevolution (Karban and Agrawal 2002). Although
our oviposition experiment considered only a small num-
ber of individuals, the results were consistent with such
behavior, and our model-fitting results provide yet stron-
ger evidence. The fact that monarch larvae generally per-
form more poorly on previously damaged plants (Van
Zandt and Agrawal 2004) suggests that part of the ultimate
explanation for density-dependent oviposition behavior is
avoidance of competition with conspecifics. The occur-
rence of density-dependent predation in our plots, how-
ever, suggests that avoidance of predators may also be part
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of the ultimate explanation. Of course, our results are
limited to a single field site in a single year, and so female
preference for individual host plants may be more im-
portant under other circumstances than those in our
experiments.

The larger significance of this work is that our models
may be relevant to monarch conservation. Because the
monarch is the only bidirectional migratory insect in
North America (Williams 1930), and because the geo-
graphic extent of its wintering habitat is highly constrained
(Urquhart and Urquhart 1976; Brower et al. 1977; Was-
senaar and Hobson 1998), it may potentially be at risk of
extinction (Weis et al. 1991; Malcolm 1993; Malcolm and
Zalucki 1993; Brower 1995; Thomas et al. 1996; Brower
et al. 2002). Monarch populations fluctuate widely in re-
sponse to large-scale weather patterns (Brower 1995;
Swengel 1995), but as we have shown, they are regulated
locally by the small-scale decisions of ovipositing females
and foraging predators. Both density-independent and
density-dependent processes are therefore relevant to
monarch population dynamics (Turchin 1995). Indeed,
our work clearly demonstrates that there is an upper
bound on larval monarch numbers in milkweed patches.
Decreases in milkweed abundance that force monarchs to
oviposit at higher local densities are therefore likely to lead
to fewer monarchs because of density-dependent preda-
tion. This is in contrast to much conventional thinking,
which has predicted higher colonization success rates when
there are greater numbers of propagules (Ebenhard 1991).
Furthermore, although much is known about the density-
dependent factors leading to emigration of butterflies from
patches (Hansson 1991; Kuussaari et al. 1996; Hanski
1999), far less is known about the density-dependent fac-
tors affecting immigration into patches. Our results imply
that such nonlinearities can be important for monarch
population dynamics and should be taken into account in
efforts to conserve monarchs. Such effects may currently
be of limited importance for North American monarch
populations because of the ubiquity of common milkweed
but may nevertheless be of significance for the conser-
vation of other egg-avoiding butterflies.

Conclusion

We have shown that stochastic models can play a valuable
role in uniting experimental and observational data in
ecology. Our results also add to an understanding of but-
terfly colonization dynamics by providing a clear example
of how female monarchs avoid existing eggs, by showing
that egg predation increases with egg density, and by quan-
tifying the relative importance of these effects for natural
egg dispersions. These nonlinearities have the potential to

affect within-patch density in a way that ultimately leads
to a higher fraction of occupied patches.
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