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 Ecology, 73(2), 1992, pp. 479-494

 ? 1992 by the Ecological Society of America

 ON THE SPATIAL SPREAD OF INSECT PATHOGENS:

 THEORY AND EXPERIMENT1

 GREG DWYER2

 Department of Zoology, University of Washington, Seattle, Washington 98195 USA

 Abstract. The mathematical theory of animal diseases has seen explosive growth in

 the past decade, yet most of the existing theory examines only temporal disease spread,

 ignoring the effects of patchy host or pathogen spatial distributions. Here I present a model

 for the within-season spatial spread of insect pathogens that incorporates host movement

 in an otherwise conventional insect host-pathogen model. Mathematical analysis of the

 model reveals that the pathogen will spread through the host population in a moving wave

 front of disease, known as a "travelling wave." This analysis shows how the spatial rate

 of spread of the pathogen depends upon the transmission rate of the disease, the rate of

 production of the pathogen by infected hosts, the initial population of the host, the decay

 rate of the pathogen, and the death rate of infected hosts.

 To test the predictions of the model, I performed a series of field experiments with the

 nuclear polyhedrosis virus (NPV) of Douglas-fir tussock moth, Orgyia pseudotsugata. First,

 I estimated each of the parameters of the model in the field with a series of small-scale

 experiments, and used the parameter estimates to predict the spatial rate of spread of the

 NPV through a population of tussock moth larvae (NPV diseases, like many insect patho-

 gens, do not infect adults). To test this prediction, I then performed an experiment in which

 I measured the rate of spread of the NPV in an experimental population of tussock moth

 larvae on linear arrays of Douglas-fir seedlings. The model predicts the rate of spread of

 tussock moth NPV fairly accurately, suggesting that one can use this type of model to

 extrapolate individual behavior and localized transmission patterns to broader-scale spatial

 dynamics.

 Key words: biological control; disease transmission; Douglas-fir tussock moth; epizootiology; host-

 parasite; mathematical epidemiology; model of spatial spread of disease; nuclear polyhedrosis virus;

 population biology of disease; reaction-diffusion; spatial spread; travelling wave.

 INTRODUCTION

 Models describing the dynamics of infectious dis-

 eases in animal populations represent one of the best-

 developed areas of mathematical ecology (Anderson et

 al. 1 981, Anderson and May 1981, Levin and Pimentel

 1981, Hochberg 1989, Dwyer et al. 1990). Neverthe-

 less, like most ecological theory, models of animal dis-

 eases largely have been based on the assumption that

 spatial structure is of negligible importance; that is,

 most models assume that the spatial distributions of

 host and pathogen are unimportant. Many of the ex-

 isting models that do include spatial structure require

 a knowledge of how transmission varies with distance

 from the pathogen (so-called "contact distribution

 models" [Mollison 1977, Thieme 1977, Diekmann

 1979]). Since transmission by this definition would be

 hard to measure for mobile hosts, applications of this

 theory have been restricted to plant diseases (van den

 Bosch et al. 1988a, b, c). In this paper I analyze and

 I Manuscript received 9 November 1990; revised 22 April

 1991; accepted 8 May 1991; final version received 5 June

 1991.

 2Present address: Department of Entomology, Fernald Hall,

 University of Massachusetts, Amherst, Massachusetts 01003

 USA.

 test a model of insect pathogens in which spatial struc-

 ture plays a central role. My goal is to develop a model

 that is simple enough to provide a general theoretical

 framework for the spatial dynamics of insect patho-

 gens, yet is realistic enough to allow predictions of their

 rate of spatial spread. The model that I use (a so-called

 "reaction-diffusion model" [Kendall 1965, Murray et

 al. 1986, Murray 1989]) requires only a local mea-

 surement of transmission, and thus can be applied eas-

 ily to real insect host-pathogen systems.

 Although spatial structure has been shown to be im-

 portant in a number of insect host-pathogen systems

 (see Entwistle et al. [1983] for a review), the lack of an

 appropriate spatially structured theory has made it dif-

 ficult to understand the existing field data. Part of my

 intent in this paper is to provide a basic theoretical

 background to aid in identifying the mechanisms driv-

 ing the spatial spread of insect pathogens. More gen-

 erally, since pathogens play an important role in the

 dynamics of an enormous number of insects (Kaya and

 Anderson 1976, Harkrider and Hall 1978, Myers 1981,

 Fuxa 1982, Kalmakoff and Crawford 1982, Carter et

 al. 1983, Entwistle et al. 1983, Murdoch et al. 1985,

 Fleming et al. 1986), and are widely used as biological

 insecticides (Thompson and Steinhaus 1950, Bird and

 Burk 1961, Stairs 1965, Klein and Podoler 1978,
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 McLeod et al. 1982, Mohamed et al. 1983, Podgwaite

 et al. 1984, Shepherd et al. 1984, Fuxa 1987, Otvos et

 al. 1987), an understanding of their spatial dynamics

 will contribute to both basic insect ecology and insect

 pest management.

 For the purpose of testing the model I focus on a

 particular insect-pathogen system: Douglas-fir tussock

 moth, Orgyia pseudotsugata, and its nuclear polyhe-

 drosis virus or NPV. Douglas-fir tussock moth ranges

 from southern British Columbia to Arizona and Cal-

 ifornia, and feeds on economically important conifers

 throughout its range (Brookes et al. 1978). Larvae go

 through five instars in the male, and six in the female.

 Females are flightless, and most long-distance dispersal

 is accomplished by ballooning in the first and some-

 times the second instar (Mitchell 1979). Periodically,

 the tussock moth undergoes outbreaks in which its

 density increases by >4 orders of magnitude (Brookes

 et al. 1978); these outbreaks are often terminated by

 epizootics of the NPV disease. The DNA of NPVs is

 enclosed in a polyhedral-shaped protein matrix, called

 a polyhedral inclusion body, which enables the virus

 to survive outside of the host for long periods and acts

 as the infectious stage in the viral life cycle. Larvae

 become infected by accidentally consuming these par-

 ticles on contaminated foliage; if a larva consumes

 enough particles at once, it becomes infected, and dies

 within z2 wk. Shortly after the larva dies its integu-

 ment breaks open, releasing particles into the environ-

 ment where they can infect new larvae. Because of this

 mechanism of transmission, only dead larvae are in-

 fectious.

 In earlier work on this system (Dwyer 1991) I dem-

 onstrated that the transmission rate of the disease is

 partly dependent upon the spatial patchiness of the

 pathogen, an effect that appears to be modulated by

 the movement rate of the host. By building on these

 empirical results, the present paper is an attempt to

 explore mathematically the consequences of pathogen

 patchiness and host movement for the spatial spread

 of the pathogen. Although I focus here on pathogen

 spread from a point source through a uniformly dis-

 tributed host population, the model can be used to

 represent the disease dynamics resulting from any ini-

 tial distribution of host and pathogen.

 Because this paper contains both the development

 of a general model, and an experimental test of the

 model with a specific system, its organization is not

 standard. In the first two sections I describe the model

 and analyze the range of behaviors that it can exhibit.

 In the third section, I describe a set of experiments that

 were used to estimate parameters in the model, and an

 experiment designed to test the model, in which I com-

 pared the model's predictions to the outcome of ex-

 perimentally initiated epizootics. Finally, in the Dis-

 cussion, I consider the generality of the model, and its

 successes and failures in the specific case of the NPV

 of Douglas-fir tussock moth.

 THE MODEL

 As Anderson and May (1981) observe, what makes

 many insect pathogens different from other animal dis-

 eases is the presence of long-lived infectious stages that

 are capable of surviving for extended periods outside

 of the host. Such so-called "free-living" stages are not

 confined to viruses; fungal pathogens and microsporid-

 ia, for example, also have long-lived infectious stages

 (Carruthers and Soper 1987, Maddox 1987). Since my

 immediate concern is with viruses, I will here deem-

 phasize fungi and microsporidia. However, the model

 that I present is not specific to a particular pathogen

 taxon. The standard approach to modelling insect dis-

 eases involving free-living pathogens is to construct

 three differential equations, one each for the density of

 susceptible hosts (S), the density of infectious hosts (I)

 and the density of free-living pathogen particles (P)

 (Anderson and May 1981):

 dS=r(S+I)-vPS; (1)

 dT

 dI= vPS - aI; and (2)

 dP

 T= XI -[ + (S + I)]P, (3)

 dT

 where r is the reproductive rate of the host, v is the

 transmission coefficient, a is the rate of disease induced

 mortality, X is the rate of production of pathogen par-

 ticles by infected hosts, A is the decay rate of the patho-

 gen, and T is time. This system of equations describes

 how epizootics develop in systems in which host and

 pathogen are said to be "well-mixed." In other words,

 either (1) the host or the pathogen (or both) is very

 mobile or (2) the host and pathogen spatial distribu-

 tions are uniform; in either case, spatial distribution

 may be unimportant. Not surprisingly, these condi-

 tions are often violated for actual insect host-pathogen

 systems (Entwistle et al. 1983).

 In the present paper I consider only host-pathogen

 dynamics within a season. This is because a single

 season represents an experimentally tractable time scale

 and because in practical applications, such as the use

 of pathogens as biological insecticides, we are con-

 cerned primarily with within-season spread (Shepherd

 et al. 1984, Otvos et al. 1987). Restricting the model

 to within-season dynamics allows me to simplify Eqs.

 1-3 in two ways. First, there is no reproduction of the

 host within a season. Second, the amount of virus con-

 sumed by the host within a season (virus consumption

 is represented by the v(S + I)P term in Eq. 3) is prob-

 ably negligible compared to the amount produced by

 infected hosts, as X and A are typically much larger than

 v (Anderson and May 1981; also see Predicting the

 spatial spread of the NPV of Douglas-fir tussock moth,

 below. Relaxing this assumption has no effect on the
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 calculated rate of spread of the pathogen). The sim-

 plified model is thus:

 dS = -vPS (4)

 dT '

 -= vPS - aI; and (5)

 dT

 dP

 -= XI- AP. (6)

 dT

 I have examined the ability of this model to describe

 the local transmission dynamics of the NPV of tussock

 moth, and have found that it works well if all hosts

 are in the same developmental stage (Dwyer 1991).

 Here I extend the model to include spatial dynamics

 by allowing for the movement of host and pathogen.

 This is done by adding a term to Eqs. 4 and 5 that

 represents larval movement (typically only larvae can

 become infected); since the model now keeps track of

 changes in both space and time, the ordinary differ-

 ential equations become partial differential equations.

 Movement is represented as diffusion, which is equiv-

 alent to assuming that larvae move randomly in all

 possible directions (Okubo 1980). This approximation

 is appropriate for many insects (Kareiva 1983), in-

 cluding Douglas-fir tussock moth larvae, as I show in

 Predicting the spatial spread ... : Parameter estima-

 tion, below. Incorporating more complex host move-

 ment into the model would be straightforward (Okubo

 1980), although it might complicate the analysis.

 The resulting spatially structured model is:

 aS (X T)PS Da2s(7

 a )=VPS + DaX2 (7)

 aI (X,T) a2i

 aT~xr) = vPS - aI + Dax; and (8)

 aP (X, T) x 9

 aT

 The symbols here are the same as in Eqs. 4-6, with

 the exception that the susceptible population S. the

 infected population I, and the pathogen population P

 are now functions of both time T and distance X. In

 addition, the D 02 terms represent host movement,

 aX2

 where the diffusion coefficient D is a measure of dis-

 persal rate.

 In the present paper the model is confined to one

 spatial dimension. Although the spatial spread of insect

 diseases in the field of course occurs in two dimensions,

 the one-dimensional model simplifies both the analysis

 and the experimental test. Moreover, the dynamics of

 one-dimensional disease models with dispersal are of-

 ten qualitatively similar to the dynamics of their two-

 dimensional counterparts (Murray et al. 1986). Finally,

 in many situations one dimension may well be a rea-

 sonable approximation. For example, when a pathogen

 spreads outward from a point, the disease front that

 develops may be nearly circular. At long enough time

 intervals, a spreading circle will present an essentially

 planar front in each direction, since a circle with a large

 enough radius viewed at a local scale looks like a straight

 line. In such cases, the spread in any particular direc-

 tion can be approximated with one dimension. Because

 of this, when insect viruses are used in biological con-

 trol their spread is often described in terms of one

 dimension (Entwistle et al. 1983, Otvos et al. 1987).

 ANALYSIS OF THE MODEL

 One of the important features of the class of model

 represented by Eqs. 7-9 is that such models can exhibit

 what is known as "travelling wave behavior" (Murray

 1989). For the present model, this means that the spa-

 tial distribution of the infected fraction of the popu-

 lation develops into a moving wave front of disease.

 As it moves across the landscape, this front is simply

 a transition zone between high disease incidence close

 to the source of the disease and low disease incidence

 far from the source of the disease (Fig. 1). Significantly,

 the front will maintain its shape if the spatial scale is

 large enough that boundary effects are not important.

 Although travelling waves may seem abstract, ex-

 isting data on the spatial spread of insect viruses in the

 field suggest that such waves exist in nature. In each

 of the field studies reviewed by Entwistle et al. (1983),

 the spatial distribution of the infected fraction of the

 population looks and moves very much like a travelling

 wave. Computer simulations of the model Eqs. 7-9

 demonstrated that travelling waves with constant shape

 occur in the model as well. This indicates that a more

 formal analytical exploration of travelling wave be-

 havior may be possible (described in detail in Appen-

 dix A). Travelling wave analysis has received scant

 attention from field ecologists (but see van den Bosch

 et al. 1990, Manasse and Kareiva 1991), which is un-

 fortunate because it is a major tool for exploring spa-

 tially distributed population phenomena, and often can

 be understood with little more than linear stability

 analysis of ordinary differential equations (Odell 1981).

 Briefly, the analysis consists of transforming the model

 to a moving coordinate system. This reduces the partial

 differential equations-Eqs. 7-9, which are functions

 of space X and time T-to ordinary differential equa-

 tions, which are functions of a new "dummy" variable

 t and a new parameter c (according to the transfor-

 mation t = X + cT). The new parameter c is the rate

 of advance of the wave of disease, or the wave speed.

 This transformation allows me to analyze the model

 as a system of ordinary differential equations.

 As in linear stability analysis, the analysis begins

 with the identification of the equilibrium points. For

 Eqs. 4-6 there are two equilibrium points
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 FIG. 1. Travelling wave fronts of disease in an insect population. All the curves were generated by numerical simulation

 of Eqs. 4-6. For each graph the time (t) between successive curves is indicated in days. The parameters for all four graphs

 are the same (Table 1); the only difference is the location of a barrer beyond which the insect hosts cannot move. The distance

 between the source of the disease and the barrer is indicated at the top of each graph: (a) 20 m, (b) 6 m, (c) 2 m, and (d) 0.6

 m. Note that as the spatial scale is reduced, in other words as the barrer moves closer to the source of the disease, the waves

 maintain their shape for shorter time intervals. The constancy of shape over time varies from (a), in which there is a long

 series of unchanging waves, to (d), in which the front of disease is very close to uniform almost immediately. Also, in all

 cases, there is an effect of the initially small quantity of pathogen particles. In (a), for example, it takes almost 80 d before

 an unchanging wave develops. (c) represents the scale of the experimental test of the model (see Predicting the spatial spread

 of the NPV of Douglas-fir tussock moth).

 (SI,P) = (0,0,0) and (10)

 (SI,P) = (S'0,00)I (1 1)

 where SO is the initial population of susceptibles. I

 assume that the initial susceptible population is uni-

 formly distributed (so that S[X, 0] can be written S[O]);

 the analysis requires this assumption, although the

 simulations do not. With this initial condition, a trav-

 elling-wave solution to the model consists of a wave

 of disease that transforms one spatially uniform equi-

 librium into another. The simulations indicate that, as

 in the model without spatial structure (i.e., Eqs. 4-6),

 there is a threshold value of the susceptible population.

 For the non-spatial model, this threshold is the min-

 imum value necessary for an epizootic to occur. For

 the spatial model the threshold for an epizootic is also

 the threshold for a travelling wave. That is, for

 SO < - (12)

 vX

 no wave forms; instead, the disease barely spreads from

 the point of its introduction. For

 So > - (13)

 vX

 a travelling wave occurs. In front of the wave, the

 population of susceptibles is equal to SO, and the pop-

 ulation of the infected hosts and pathogen particles is

 equal to 0. Behind the wave the population of suscep-

 tibles trails away to a new spatially uniform equilib-

 rium, and the populations of infected hosts and patho-

 gen particles trail away to 0 asymptotically.

 In Appendix A I derive an expression for the min-

 imum possible wave speed. Although it is extremely
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 FIG. 2. Rate of advance or wave speed c of the tussock

 moth nuclear polyhedrosis virus vs. the pathogen decay rate

 A. The values of the other parameters are the same as in

 Table 1.

 difficult to prove that waves travelling at this speed are

 the stable ones, I found that waves in numerical sim-

 ulations travel at the calculated minimum speed for a

 wide range of parameter values. This suggests that the

 analytically calculated minimum wave speed is indeed

 the speed of the wave. Similar results have been found

 for other disease models (Thieme 1977, Diekmann

 1979, Murray et al. 1986). The usefulness of calculating

 the wave speed is that it provides a single parameter

 giving the rate of spread of the disease. Often this is

 what we are most interested in, rather than the partic-

 ular shape of the wave. Moreover, the wave speed sum-

 marizes the relationship between the rate of spread of

 the disease and the model parameters. It combines the

 individual-level processes of disease transmission, dis-

 ease induced mortality, production of virus particles,

 virus decay, and host movement into a single measure

 for the population-level phenomenon of disease spread.

 This emphasizes that the model makes predictions at

 the level of the population, using parameters that are

 0.2

 E /

 CD 0.1-

 0.0

 0 200 400 600 800 1000 1200

 Initial population, SO (ma )

 FIG. 3. Wave speed c of the spread oftussock moth nuclear

 polyhedrosis virus vs. size of the initial susceptible host pop-

 ulation, SO. The other parameters are the same as in Table 1.
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 2 2
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 FIG. 4. Wave speed c of the spread of tussock moth nuclear

 polyhedrosis virus vs. the parameter combination vA. The

 other parameters are the same as in Table 1.

 for the most part estimated at the level of the individual

 (Hassell and May 1985).

 An important caveat is that the initial velocity of the

 wave of disease will depend upon the initial conditions.

 For example, if the disease is introduced in the form

 of only a few pathogen particles, it can take a substan-

 tial period of time for a wave front of disease to reach

 the calculated velocity (Fig. 1). Similarly, as the wave

 front approaches the edge or boundary of a habitat, it

 will begin to change shape. As the spatial scale of the

 habitat becomes smaller, these two effects will combine

 to distort the wave front over the entire area of the

 epizootic (Fig. 1). In summary, the calculated wave

 speed describes the long-term rate of spread of the

 pathogen in a large-scale habitat, while the simulations

 can describe both initial disease spread and spread at

 small habitat scales.

 Figs. 2, 3, 4, and 5 depict the dependence of the wave

 speed on the model parameters, summarizing the mod-

 el behavior with respect to each parameter. The direc-

 0.10-

 0.08

 E\

 0.06

 " 0.04

 4,

 0.02

 0.00

 7 0 1 0-6 1 0 5 1 04 10 2 1 0 1 0

 Disease-induced death rate, a (d -1)

 FIG. 5. Wave speed c of the spread oftussock moth nuclear

 polyhedrosis virus vs. the disease-induced larval mortality

 rate a. The other parameters are the same as in Table 1.
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 tion of this dependence is in accord with intuition; that

 is, the rate of spatial spread of the disease increases

 with increasing pathogen longevity (Fig. 2: decreasing

 A), increasing initial host population (Fig. 3: SO), in-

 creasing transmission rate or pathogen production rate

 (Fig. 4: vX), increasing diffusion rate (linearly with I5:

 see Appendix A), and increasing longevity of infected

 larvae (Fig. 5: lower a).

 Figs. 2-5 also indicate the sensitivity of the model

 to each parameter, which provides guidance on how

 accurately each of these parameters must be estimated.

 For instance, a 1 0-fold increase in the decay rate of the

 pathogen ,u produces at most a 30% decrease in the

 wave speed, indicating that I do not need a very exact

 estimate of the decay rate in order to predict the wave

 speed. This information also could be used to under-

 stand how different strains of a pathogen will vary in

 the rate at which they spread spatially, which would

 be useful in evaluating the efficacy of different strains

 for pest control.

 PREDICTING THE SPATIAL SPREAD OF THE NPV OF

 DOUGLAS-FIR TUSSOCK MOTH

 Testing whether the model Eqs. 7-9 can be used to

 extrapolate from the behavior of individual Douglas-

 fir tussock moth (DFTM) larvae to patterns of disease

 spread poses two separate experimental problems. The

 first is estimating the parameters of the model, and the

 second is testing the model prediction that arises from

 the parameter estimates. In the summer of 1989 I per-

 formed a series of experiments in which I first inde-

 pendently estimated the parameters of the model, and

 second tested the prediction of the model. Estimating

 the parameters is fairly easy, as most of them can be

 estimated at a small scale. Testing the model prediction

 experimentally is logistically difficult, because the model

 requires the introduction of the disease into a disease-

 free population that is dense enough to permit disease

 spread. Also, as the population declines as a result of

 the disease, stochastic effects will become more im-

 portant, yet the model is deterministic. Although the

 experimental test that I present suffers from these dif-

 ficulties, it nevertheless usefully illustrates the proce-

 dure of testing the model.

 Parameter estimation

 I separated the problem of parameter estimation into

 four steps: (1) estimating the decay rate of the virus,

 Ai; (2) estimating the disease-induced mortality rate, a;

 (3) estimating the transmission rate, v, times the patho-

 gen production rate, X; (4) estimating the diffusion co-

 efficient, D. The first three of these represent the in-

 teraction between host and pathogen; it turned out to

 be possible to estimate all of these parameters from

 the same experiment. I then used an additional exper-

 iment to estimate the diffusion coefficient.

 All the experiments were carried out in an area of

 second-growth Douglas-fir/grand fir (Pseudotsuga

 menziesii/Abies grandis) forest in northern Idaho that

 has a history of tussock moth outbreaks and virus epi-

 zootics. Because transmission rates vary with larval

 instar (Dwyer 1991), for both the experimental esti-

 mates of the parameters and the experimental test of

 the model I used only fifth-instar larvae.

 Disease parameters (,i, v, X, a).-To estimate the pa-

 rameters describing the dynamics of the host-pathogen

 interaction, I reared healthy larvae on a pair of seedling

 Douglas-fir containing infected cadavers, and counted

 the number of larvae that became infected as a result

 of contact with the cadavers (only larvae can become

 infected, since adults do not feed). The Douglas-fir were

 planted in wading pools, with a sticky substance (Tan-

 glefoot) around the top of the wading pool that the

 larvae will not touch: this prevents larvae from leaving

 the experimental arena (Dwyer 1991). Around each

 wading pool I placed a 1.2-M3 cage made of spun-

 bonded polyester (Reemay), which prevents predation

 by vespid wasps yet admits > 95% of ambient sunlight.

 Both initially healthy larvae and initially infected

 larvae (which I will refer to as "primary infecteds")

 were reared in the laboratory from eggs of the GL- 1

 strain of Douglas-fir tussock moth (Martignoni and

 Iwai 1980; eggs provided by Paul Iwai). To ensure that

 larvae were not accidentally contaminated with the

 virus, all eggs were surface-sterilized in a 10% bleach

 solution (Robertson 1985). Primary infecteds were in-

 fected by being fed artificial diet contaminated with a

 dose high enough to ensure 100% mortality (1 mL of

 a solution of 40 infected third-instar cadavers ground

 up in 100 mL of distilled water).

 The healthy and primary-infected larvae were added

 to the trees z24 h before the primary-infected larvae

 died. Before the primary infecteds were added to the

 trees they were marked with fluorescent powder to dis-

 tinguish them from subsequent infections. I censused

 each pair of trees every other day, at which time I

 removed for autopsy all dead larvae that were not

 marked with fluorescent powder. Smears from dead

 larvae were examined under a light microscope at 400 x

 magnification; presence of polyhedral inclusion bodies,

 which can be seen easily at this magnification, indicates

 that a larva died of the virus.

 Since all secondary infections were removed shortly

 after they died, transmission occurred only between

 the initially healthy larvae and the primary-infected

 larvae. As will become clear from the methods that I

 use to estimate each parameter, the rate at which healthy

 larvae became sick in an experiment can be used to

 estimate each of the parameters except the diffusion

 coefficient D.

 Estimating the decay rate of the virus: A. -To mea-

 sure the rate of virus decay I exposed healthy larvae

 to infected cadavers of varying ages, which thereby had

 experienced varying periods of virus decay. In partic-

 ular, healthy larvae were placed on each pair of trees

 on 10 August 1989. These trees had received cadavers
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 either 1, 4, 13, or 32 d prior to 10 August. These four

 different lead times for the placement of infected ca-

 davers represented the four treatments, which were

 each replicated twice. One replicate consisted of two

 seedling Douglas-fir planted in a wading pool, with 50

 healthy larvae and 6 infected cadavers placed together

 on the trees (these densities are within the range of

 densities observed during natural tussock moth out-

 breaks [Mason and Thompson 1971, Mason 1981]).

 In addition, to test for the presence of extraneous virus

 in the environment or accidental infections in the

 healthy larvae, I established two controls to which no

 infected cadavers were added. No infections appeared

 in either control. The fraction of infected larvae thus

 serves as a measure of transmission, and the decline

 in transmission with the age of cadavers can be used

 to estimate the decay rate of the virus.

 Surprisingly, the fraction of larvae that became in-

 fected in the virus decay experiment showed no decline

 with cadaver age (Fig. 6); in other words, over a time

 period of 32 d virus decay was unmeasureably low.

 This was probably due to the fact that the experiments

 were carried out below the forest canopy, where the

 amount of sunlight is relatively low (Podgwaite et al.

 1979, Olofsson 1988). Since virus decay over the pe-

 riod of the experiment was negligible, in the model I

 assume that the virus half-life is 1 yr; in this range of

 Ai, the wave speed c changes very slightly with decay

 rate (Fig. 2), so that the particular value of A is of little

 consequence. With a half-life of 1 yr, A :z 0.002 d-l,

 which leads to only a 5% loss of virus over 32 d, which

 is a small enough loss to produce the negligible decay

 that I observed experimentally.

 Disease-induced mortality rate: a. -In the model the

 disease-induced mortality rate a is assumed to be

 equivalent to the inverse of the incubation time. Since

 the incubation time is sensitive to ambient tempera-

 ture, which fluctuates widely in the field, lab estimates

 based on constant temperature are not very meaning-

 ful. To ensure that my estimate of incubation time

 would encompass natural temperature variation, I used

 the time (15 d) until the first infection appeared in

 either of the two replicates of the 1 -d-old cadaver treat-

 ment as an estimate of the incubation time, so that a

 is 1/15 per day. Since Fig. 5 confirms that, in this range

 of incubation times, the wave speed is relatively in-

 sensitive to a, my crude estimation procedure was

 probably adequate.

 Transmission rate v and pathogen production rate

 X. -In Appendix A I show that the model can be non-

 dimensionalized so that the transmission coefficient v

 and the pathogen production rate A only appear to-

 gether as vX; this means that the model is only affected

 by these two parameters in combination. Because virus

 decay was negligible over the space of a month, the

 1 -d treatment of the decay experiment can be used to

 estimate vX by numerically solving the following equa-

 tion for vX (see Appendix B).

 1.0

 *0.8-

 0.6

 .2 0.4-

 0.2

 0.2

 1 4 13 32

 Cadaver exposure time (d)

 FIG. 6. The effect of different periods of exposure to the

 environment of NPV-infected tussock moth cadavers on ca-

 daver infectiousness (the virus decay experiment).

 R (t) = XIOSo I -(1 -et)

 vXI_ a

 a

 a

 w R s( -1 eaI )t), (14)

 where R(t) is the cumulative number of infections at

 time t, Io is the number of primary infected larvae, and

 So is the number of initially healthy larvae, and the

 other parameters are the same as in Eqs. 4-6. Since

 R(t) represents the observed data, and S0 and Io are

 known initial conditions of the experiments, vX is left

 as the only unknown in Eq. 14 once a value of the

 disease-induced mortality rate a has been obtained.

 For each of these two replicates vX then can be es-

 timated by minimizing the sum of the squared differ-

 ences (least-squares: Seber [1977]) between the model

 prediction (Eq. 14) and the time series of the cumu-

 lative number of infections. Fig. 7 shows the fit between

 the model and the time series for each replicate. Con-

 sidering that there is only one parameter to adjust, the

 model fits the data fairly well. The resulting value of

 vX, averaged over the two replicates, is given in Table 1.

 Estimating the host diffusion rate D. -A point re-

 lease of an insect can be used both to test the assump-

 tion of diffusion as a model for movement and to es-

 timate the diffusion coefficient D (Okubo 1980, Kareiva

 1983). The diffusion model predicts that, if a group of

 insects is released at a point in space, then their dis-

 tribution at any subsequent point in time will approx-

 imate a normal curve. Mathematically, the spatial dis-

 tribution of the dispersing larvae will be

 p(x,t) = 4d ex2/4Dt ( 15)

 That is, the fraction of larvae at each point in space x

 at time t, p(xt), is normally distributed about the re-

 lease point with mean zero and variance 2Dt. As a

 result, the mean squared deviation of the distribution
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 FIG. 7. Time series of virus infections * in the first two

 replicates of the virus decay experiment together with the best-

 fit version of Eq. 14.

 of insects in space, which is the variance of the normal

 curve at any one time, will increase linearly through

 time with slope equal to 2D. That is,

 m,= 2Dt, (16)

 where m, is the mean squared deviation at time t.

 On 1 1 August 1989 I released 40 fifth-instar tussock

 moth larvae on the third tree of a row of eight seedling

 Douglas-fir. To ensure that none of the larvae escaped,

 and to prevent ant predation, the trees were planted in

 sterile soil on a plastic sheet. Around the edge of the

 sheet I secured plastic lawn edging that had a coating

 of Tanglefoot along its top edge. The trees were planted

 -: 25 cm apart, and the entire setup was z 2 m in length.

 I censused the experiment each day for the next 4 d.

 For this experiment the regression of m. against time

 t has a slope of 0.0548 (Fig. 8; r2 = 0.995), so that the

 diffusion coefficient is 0.0274 m2/d. I used this diffu-

 sion coefficient D in Eq. 15 to predict the distribution

 of larvae at each sampling date (Fig. 9). This is a way

 of testing the assumption of diffusion; if the larvae are

 diffusing at a constant rate, then the diffusion coeffi-

 cient calculated from the regression on allfour obser-

 vation dates should be sufficient to describe the shape

 of the curve on each observation date. A Kolmogorov-

 TABLE 1. Experimental estimates of the model's parameters.

 Parameter Symbol Value

 Disease-induced decay

 (mortality) rate a 1/15 d-1

 Transmission rate

 x Pathogen production

 rate* vX 0.00248 m2/d2

 Disease decay rate A 0.002 d-l

 Initial population size So 118.1 hosts/m

 Diffusion coefficient D 0.0274 m2/d

 * Value is the average of the two replicates.

 Smirnov test indicated that none of the four observed

 distributions of larvae differed significantly (P < .05)

 from that predicted from Eq. 15 using the value of D

 calculated from Eq. 16; in other words, there is no

 reason to reject diffusion as a model of the movement

 of tussock moth larvae. (The high coefficient of deter-

 mination, r2, of the regression is also encouraging but

 cannot be subjected to a significance test, as the se-

 quential observations are of course not independent

 [Kareiva 1983].)

 Testing the model

 Table 1 lists the values of all the parameters in the

 model. Given these values, the model can be used in

 two complementary ways to predict a priori the rate

 of spread of the virus in the field. First, through nu-

 merical simulations I can use the model to predict the

 entire distribution of the infected fraction of the pop-

 ulation. Second, using the wave speed calculation given

 in Appendix A, I can predict the rate of advance for

 the wave of infection. To tie these predictions to ob-

 servations of the virus in the field, I performed an

 experiment in which I measured the rate of spatial

 spread of the virus. This task is of course very difficult,

 as I am attempting to predict quantitatively the dy-

 " 0.3

 la y =0.0548 x (r2 =0.995)

 %-1

 C

 * 0.2-

 SW 0.1-

 0.0

 0 1 2 3 4 5

 Time (d)

 FIG. 8. Mean squared deviationl of the position of tussock

 moth larvae dispersing from a point release on seedling Doug-

 las-fir vs. the time since release.
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 FIG. 9. Observed distribution of displacement of tussock

 after they were released, together with prediction of the diffusii

 Fig. 8.

 namics of an interspecific interaction from indepen-

 dent estimates of the parameters, so that even a qual-

 itative fit between the model and the experimental data

 may be considered as support for the model (Kareiva

 and Odell 1987).

 Methods. -To measure the spatial spread of the vi-

 rus in the field, I released the virus into an experimental

 population of tussock moth larvae. The experimental

 setup was similar to that used to measure the move-

 ment rate of the insect; that is, I used eight seedling

 Douglas-fir set up -25 cm apart, in a line, with the

 trees again planted in sterile soil on plastic sheets sur-

 rounded by lawn edging coated with Tanglefoot. To

 prevent predation by vespid wasps, I set up tents of

 spun-bonded polyester (Reemay) around each array of

 trees. The tents were ; 1.5 m in height, and were sup-

 ported by bamboo stakes.

 To each tree in each linear array I added 30 healthy

 fifth-instar tussock moth larvae on 10 August 1990.

 To one of the end trees I added 20 larvae that had been

 infected with the virus 9 d earlier. These larvae were

 marked with fluorescent powder so that I could distin-

 guish them from subsequent infections. All of the ini-

 1.0 l
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 0 00
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 1.0 l

 0.8 - 4 d

 0.6-

 0.4 -

 0

 0.2 -

 0 0

 0.0

 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

 Displacement (m)

 moth larvae in the point release experiment 1, 2, 3, and 4 d

 in model (Eq. 15), with the diffusion coefficient estimated from

 tially infected larvae were dead within 48 h. Because

 it is not always possible to tell whether dead larvae are

 infected without doing an autopsy, I had to remove all

 dead larvae to do autopsies. Removing larvae termi-

 nates the experiment, however, because the act of col-

 lecting dead larvae lowers the availability of virus. To

 measure the spatial spread of the virus I had to allow

 for multiple "cycles" of transmission, meaning that

 secondary infections could lead to tertiary infections,

 and so on, so that the amount of virus increased with

 time. My approach was therefore to initiate a wave of

 infection on six separate rows of trees and collect all

 the larvae from each of two rows of trees on three

 different dates. The treatments in this experiment thus

 consisted of three removal dates; that is, at 14, 28, and

 35 d after the start of the experiment, I removed all

 living larvae from each of two rows and reared them

 in the laboratory until they pupated or died. Since each

 larva was reared separately on artificial diet, by re-

 moving the larvae to the laboratory I froze the virus

 spread at an instant in time. Although larval diet is

 known to affect disease susceptibility (Vail et al. 1968,

 Keating and Yendol 1987), what matters is what larvae
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 FIG. 10. Results of the nuclear polyhedrosis virus spatial

 spread experiment compared with predictions of the spatial

 model, using the parameter values in Table 1. Observed data

 points are for two replicates pooled. Vertical bars on observed

 data points indicate 95% binomial confidence intervals.

 are eating when they are being exposed to the virus

 and not what they eat subsequently (M. Hunter, per-

 sonal communication).

 In sum, this experiment provided a snapshot of the

 spatial distribution of the infected fraction of the pop-

 ulation at 14, 28, and 3 5 d after the release of the virus.

 What one expects to see qualitatively is that initially

 the infected fraction of the larvae will be high close to

 the source of the virus, but will fall off rapidly with

 distance. At later time intervals the fraction infected

 will still be high near the source of the virus, but will

 fall off less rapidly. This points out the ultimate ne-

 cessity of the model; without it, it would be impossible

 to make an a priori prediction that is any more quan-

 titative than this.

 The three treatments were each replicated twice, and

 the rows of trees were arranged in two blocks of three

 rows each, with the blocks determined by amount of

 shade. In addition to the three experimental treat-

 ments, each block included a control row to which no

 infected larvae had been added, to act as a check for

 extraneous infections or accidental infections in the lab

 colony. Larvae in the control rows were not removed

 until the last removal date. No infections occurred in

 either control row. To test for infections that occurred

 in the laboratory, a corresponding group of control

 larvae was maintained in the laboratory for the du-

 ration of the experiment: no infections occurred in this

 group either.

 Results. -The results of the experiment are plotted

 in Fig. 10. At 14 d a distinct wave is visible. At 28 d

 the shape of the wave is obscured by what is probably

 noise due to small sample size, although there still

 appears to be a rough gradient of disease incidence. At

 35 d the sample sizes are so small that the estimates

 of the fraction infected are unreliable.

 In Fig. 10 I also have plotted the prediction of the

 model for initial conditions corresponding to those of

 the field experiment; that is, a uniform distribution of

 30 larvae per tree, and an initial density of 20 infected

 larvae on the first tree. Using the independently esti-

 mated parameters, the model predicts the shape of the

 wave at 14 d fairly accurately. The prediction is less

 accurate at 28 d, although the slope of the predicted

 curve is close to the average slope of the data. The

 model prediction for 35 d does not match the data at

 all.

 Because the spatial domain of the experiment turned

 out to be small relative to the distance that the disease

 travels in 28 d, the shape of the travelling waves pre-

 dicted by the model changes slightly with time. In other

 words, larvae reached the end of the row of trees quick-

 ly, so that the restraints imposed by the cage became

 important. Encouragingly, the model simulations ac-

 curately reflect this effect, in the sense that the theo-

 retically predicted waves also did not maintain their

 exact shape with time: this can be seen more clearly

 in Fig. 1 c. The analysis based on exact travelling waves

 does not take.into account the spatial scale of the ex-

 periment, because it does not include any boundary

 effects. It is nevertheless interesting to compare the

 calculated and observed wave velocities in order to

 illustrate the method. Because at 3 5 d the sample sizes

 were very small and boundary effects predominated, I

 calculated the wave speed from only the first two time

 periods of the experiment. I estimated the wave speed

 from the data by calculating the velocity of different

 fractions of infected larvae. For a fraction infected of

 >0.10 and <0.55, the observed rate of advance of the

 disease is 0.09 m/d. For a fraction infected of 0.10, it

 is 0.15 m/d, and for a fraction infected of 0.55 it is

 0.02 m/d. In spite of the distortion of the wave shape,

 this observed range of velocities compares reasonably

 well with the predicted value of 0.077 m/d.

 Although small sample size undoubtedly is impor-

 tant, the poor match between model and data at 35 d

 could also be due to incorrect model formulation. One

This content downloaded from 128.135.12.127 on Thu, 24 Mar 2016 22:37:37 UTC
All use subject to http://about.jstor.org/terms



 April 1992 SPATIAL SPREAD OF PATHOGENS 489

 of the advantages of using a reaction-diffusion model

 is that the epizootiology of the disease can be distin-

 guished from the movement behavior of the host, mak-

 ing it easier to isolate errors in model construction.

 The epizootiology of the disease is undoubtedly over-

 simplified; among other things, transmission may not

 be linearly proportional to the densities of host and

 pathogen, and there is typically an incubation time

 between infection and death (Dwyer 1991). Field ob-

 servations, however, suggested that a more significant

 error is that host movement behavior changes as foliage

 is consumed. By 35 d larvae had consumed most of

 the foliage on the experimental trees; a brief experiment

 confirmed that this leads to higher movement rates. I

 measured the diffusion coefficient D of fifth-instar lar-

 vae on defoliated and undefoliated trees by placing 40

 larvae on a seedling Douglas-fir that was planted be-

 tween two other seedlings in a line. In one treatment

 I used an undefoliated tree, while in the other I used

 a tree that had lost much of its foliage to larval feeding.

 The diffusion coefficient of larvae on the defoliated

 seedling, as measured over 2 h, was 0.0039 m2/d, while

 the diffusion coefficient on the high-quality seedling

 was 0.0013 m2/d. (The diffusion coefficient measured

 in this experiment is not comparable to that measured

 for the model because this experiment ran for <24 h,

 and tussock moth larvae have a distinct 24-h cycle of

 behavior [Edwards 1965].) This indicates that larvae

 do indeed have a higher movement rate on low-quality

 trees. In other words, although the model assumes a

 constant diffusion coefficient, in the experiment the

 diffusion coefficient increased as foliage quality de-

 clined. Although the larval densities that I used in the

 experimental test were in the range of densities ob-

 served in tussock moth outbreaks (Mason and Thomp-

 son 1971, Mason 1981), the small size of my experi-

 mental trees makes comparisons to natural densities

 difficult. As a result, it is not clear that natural outbreak

 densities would lead to sufficient defoliation to, in turn,

 increase larval movement enough to affect disease

 spread.

 DISCUSSION

 Conventional factorial field experiments are de-

 signed to test specific hypotheses. The experimental

 test of the model that I present here is similarly de-

 signed to test a specific hypothesis, with the difference

 that here the hypothesis is represented by a mechanistic

 model. Given the small spatial and temporal scales of

 the experiment, however, my experimental setup was

 too crude to be considered more than a preliminary

 test of the model. Nevertheless, the model predictions

 were reasonably close to the data for the first 4 wk of

 the experiment. This at least suggests that the hypoth-

 esis embodied by the model is correct: host movement

 and host-pathogen interactions at a local scale are suf-

 ficient to predict the spatial spread of tussock moth

 NPV. Since all the model parameters were estimated

 independently, this is a stronger statement than saying

 simply that there was an effect of host movement, viral

 patchiness, and so forth.

 Moreover, the parameters in the model were esti-

 mated at a scale that was about an order of magnitude

 smaller than the scale at which the model predicted

 the spread of the virus. Although the spatial scale of

 the experiment that I used to test the model was quite

 small, this feature of the model is common not just to

 reaction-diffusion models, but to so-called reaction-

 redistribution models, in which the assumption of dif-

 fusive movement is not required (Banks et al. 1987).

 This is significant because using information from small

 scales to predict large-scale dynamics is a central chal-

 lenge in ecology.

 Knowing the relationship between the characteristics

 of a pathogen, as represented by the model parameters,

 and the pathogen's rate of spatial spread, may have

 practical application in the release of genetically en-

 gineered insect viruses (J. P. Burand, personal com-

 munication). Before such viruses can be released in the

 field it is essential to know how far they will spread

 from the point of release. The wave speed calculation

 would be especially useful in this capacity because en-

 gineered viruses typically are designed to have a much

 shorter incubation time (larger a) and a much larger

 decay rate (larger g) than wild-type viruses; given actual

 values of these parameters, the predicted wave speed

 could be obtained easily. In fact, since all of the model

 parameters can be estimated at a small scale, the model

 has the advantage that it does not require a field release

 to make predictions of the rate of spatial spread. That

 is, given laboratory estimates of the incubation time,

 transmission rate, and so forth, of the virus, it would

 be possible to predict the spatial rate of spread of an

 engineered virus, and thus the risk that such a virus

 would escape from a release site.

 The experimental test of the model is necessarily

 specific to tussock moth and its NPV. It is important

 to emphasize, however, that no aspect of the model is

 specific to this particular insect host-pathogen system,

 and that the parameters could be estimated easily for

 other such diseases. As a result, the model should be

 applicable to other insect host-pathogen systems.

 More generally, travelling wave models, such as Eqs.

 7-9, should be useful in ecology as a whole, for several

 reasons. First of all, travelling waves are not specific

 to the model that I have presented, nor even to a small

 class of models, but can potentially occur in virtually

 any ecological model incorporating spatial structure

 (Keller and Segal 197 1, Odell 198 1, Okubo et al. 1989,

 van den Bosch et al. 1990). This mathematicalubiquity

 of travelling waves suggests that waves could result

 from a great many biological mechanisms. Indeed,

 travelling waves are apparent in disparate biological

 systems; examples include: (1) terrestrial plant succes-

 sion (D. Doak, personal communication), (2) rocky in-

 tertidal patch dynamics (R. T. Paine, personal com-

This content downloaded from 128.135.12.127 on Thu, 24 Mar 2016 22:37:37 UTC
All use subject to http://about.jstor.org/terms



 490 GREG DWYER Ecology, Vol. 73, No. 2

 munication), and (3) species invasions (Skellam 195 1).

 Moreover, travelling wave models have important

 features that may not be apparent from the single

 application that I have presented here. The key char-

 acteristics of such models are (1) they are inherently

 non-equilibrium (Chesson and Case 1985); (2) they are

 capable of simultaneously predicting both spatial and

 temporal dynamics; (3) they can easily incorporate dif-

 ferent interspecific interactions (Okubo et al. 1989);

 and (4) they are not limited to simple diffusion (Ma-

 nasse and Kareiva 1990, van den Bosch et al. 1990).

 To date, travelling wave models have been largely the

 province of theoreticians (Skellam 1951, Levin 1 981);

 their characteristics soon should make them more pop-

 ular with empiricists.
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 APPENDIX A

 In this appendix I present the details of the calculation

 deriving the minimum possible rate of advance, or wave speed,

 of the disease for Eqs. 7-9. The calculations require no more

 than an understanding of the qualitative theory of ordinary

 differential equations (so-called "linear stability analysis"; see

 May [1974], Odell [1981], or Murray [1989]). I begin by non-

 dimensionalizing the model to reduce the number of param-

 eters. If I let

 vXS (17)

 VXI

 i (18)

 vP

 a= , ~~~~~~~(19)

 a

 2~~~~~~(0

 x = ( X, (20)

 t = aT, and (21)

 P=_, (22)

 a

 then Eqs. 7-9 become

 as a2s

 t -PS + dx2' (23)

 at aX2

 ai ~~a21 n

 atAs -i + dx,' and (24)

 at aX2'

 ap

 = p(i-p). (25)

 at

 (Note that the non-dimensionalization is such that non-

 dimensional space x is a linear function of dimensional space

 X. As a result, the wave speed is a linear function of the square

 root of the diffusion coefficient D.) If the solutions to the

 model form waves that travel with constant shape at a con-

 stant speed, then the model can be converted to a moving

 coordinate system using the transformation t = x + ct. This

 converts the system of partial differential equations to a sys-

 tem of ordinary differential equations, so that

 Cs' = -ps + s', (26)

 ci' = ps-i + it, and (27)

 cp' = p(i-p), (28)

 where ' indicates differentiation with respect to t. To further

 convert this second-order system of three equations to a first-

 order system, I introduce the variables y and z such that s' =

 z and i' = y, and obtain

 st = Z. (29)

 z' = cz + ps, (30)

 it Y, (31)

 y =cy + i-ps, and (32)

 P =P(i-P). (33)

 C

 This set of ordinary differential equations has two critical

 points (or equilibria). The first is at (s,ziyp) = (s0,0,0,0,0);

 where so is the initial value of s, which for convenience I take

 to be spatially uniform. This assumption is essential to the

 analysis, but is not necessary for the simulations. The second

 critical point is at the origin.

 Numerical solutions indicate that travelling wave solutions

 only occur for so > 1. Given that so > 1, the numerical

 solutions show that the travelling waves proceed, in the phase

 space associated with Eqs. 29-33, from so to another spatially

 uniform equilibrium (sziyp) = (sO,,000). I have not been

 able to generate an expression for so,, but the simulations

 indicate that sO, tends to decrease as so increases; for so much

 bigger than 1, sO, is close to zero.

 25
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 FIG. Al. Graph of Eq. 34 with parameters from Table 1.

 This demonstrates graphically the calculation of the mini-

 mum wavespeed cmin,. As c is decreased, f looks successively

 like (a), (b), and (c). In (a), f has two real positive roots, in (c)

 f has two complex positive roots, and in (b) f has two (iden-

 tical) real positive roots.
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 The calculation of the minimum possible wave speed pro-

 ceeds from an analysis of the eigenvalues of the system of

 Eqs. 29-33 linearized around (so,0,0,0,O0). These eigenvalues

 are 0 = 0, c, and the roots of the cubic

 f(O) = 03- (C- ) 02-(p + l)0 + - (so- 1). (34)

 Since

 1) f(? o)= ?o,

 2) a- < 0, and

 3) for so > 1, f(O) > 0,

 for any pair of values p and so, 1(0) looks like the curves in

 Fig. Al. As c is decreased, f will successively look like Figs.

 Ala, Alb, and Alc. Iff looks like Fig. Alc, it will have one

 negative real root and a complex conjugate pair of roots, which

 means that near the critical point solutions will oscillate. Since

 at the critical point i = p = 0, so that oscillatory solutions

 imply negative population sizes, we can discard Fig. AI c. Fig.

 A lb thus represents the minimum possible value of c, denoted

 Cmin. For this minimum, <f- = 0 and f = 0, allowing us to

 00

 eliminate 0 to find cmin in terms of the other parameters. From

 this procedure, cmin is given by the positive root of g(c2,"),

 where

 g(z) = 2z3 + (3p + 9)z2 - (27pso + 3p2 - 18p)z

 + 2[z2 + z(p + 3) + p2]312 - 2p3. (35)

 For so > 1, the information that

 1) g(O) < 0,

 2) g(? oo)= ? oo, and

 3) ag < O for so > 1,

 can be used to sketch g(z) to show that it has a unique positive

 root. This root is the minimum possible velocity for a trav-

 elling wave of disease, and can be calculated by a numerical

 root-finding routine. (The actual version of Eq. 35 used to

 generate Figs. 2, 3, 4, and 5 corresponds to the dimension-

 alized version of Eqs. 29-33.)

 The sketches of 1(0) (Fig. Al) show that, for so > 1, two

 eigenvalues have positive real parts, and one has a negative

 real part. Similar sketches of f(0) for so < 1 show that there

 will instead be one eigenvalue that has a positive real part,

 and two that have negative real parts. It is important to realize,

 however, that for Eqs. 29-33 the independent variable t is

 not the same as time t but is instead x + ct. The signs on the

 eigenvalues thus are not indicative of what one usually thinks

 of as stability (whether or not the populations will approach

 an equilibrium). This is because the direction of positive t is

 arbitrary, so that if Eqs. 29-33 are "unstable" for positive (,

 we can simply reverse the sign of t and they will be "stable."

 In short, the sign of the real part of the eigenvalues still in-

 dicates the direction of the flow around a critical point, but

 this is not the same as stability. Nevertheless, the fact that

 for so > 1 there are two eigenvalues with positive real parts

 and one with a negative real part, while for so < 1 there is

 one eigenvalue with a positive real part and two with negative

 real parts, indicates that it is at least topologically possible

 for a trajectory to proceed from an equilibrium at (so > 1,0,0)

 to (so < 1,0,0). (For so < 1 it is again possible to use the

 argument that all eigenvalues must be real numbers to find a

 limit on the wave speed; the difference is that this analysis

 gives a maximum value for the wave speed.)

 It remains to be shown that there is no trajectory from [so

 > (1,0,0,0,0)] to the origin. The eigenvalues of the system

 linearized about the origin are

 -P c ?\C + 4T

 0 = O. c,-, 2 (36)

 In the vicinity of the origin, the trajectories that approach the

 origin will be governed by the solutions with negative eigen-

 values, that is by

 -p c-V~77

 c' 2 (37)

 The eigenvector associated with the eigenvalue P is the

 C

 transpose of

 [0, 0, 0, 0, A], (38)

 where A is a constant determined by the initial conditions.

 c- VP4

 The eigenvector associated with 0 = 2 is the zero

 eigenvector. This means that trajectories that approach the

 origin do so in the s = y = = z = 0 subspace (the p-axis).

 For the system Eqs. 29-33, again t is reversible, so that we

 can replace t by - and move backwards along any trajectory.

 If we make the substitution r =-t in Eqs. 29-33 and move

 backwards from s = y = i = z = 0, we see that s = y = i = z

 = 0 for all positive r regardless of the initial value of p. This

 means that any trajectory for which s = y = i = z = 0 had s

 = y = i = z = 0 for all previous t; in other words, any trajectory

 leaving (s0,0,0,0,0) will never reach the origin. In short, trav-

 elling wave solutions have trajectories that proceed from (so

 > 1,0,0,0,0) to (so < 1,0,0,0,0).
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 APPENDIX R

 In this appendix I derive Eq. 14, which I use to estimate

 the parameter combination Av from the time series of infec-

 tions in the 1-d treatment of the virus decay experiment. I

 begin by making two additional simplifications to Eqs. 4-6.

 First, since for the virus decay experiment all infected hosts

 were removed shortly after they died, there is no production

 of virus particles after the experiment begins. Second, as the

 virus decay experiment showed, there is no noticeable decay

 of virus over the course of a month. These two features of

 the experiment mean that the pathogen population P is con-

 stant, so that P = PO, where P0 is the initial input of the

 pathogen. The model that I use is thus

 dS

 d T =-vP0 , (39)

 di

 d= vPOS - aI; and (40)

 dR

 dT = *a. (41)

 To match the data from the experiment, I have introduced

 the variable R, which is the cumulative number of infected

 hosts; the other symbols are the same as in Eqs. 4-6.

 Eqs. 39-41 can be solved easily to give

 R) avP0SO [1I e-t

 R(t) = p -(1 - e-) (42)

 vP0 - a a(2

 -- (1 - e-PoPt)

 vPo

 Next, I need the assumption that the number of pathogen

 particles per individual is constant, which is a reasonable

 assumption for my experiments, in which all larvae are fifth

 instars. This is equivalent to PO = AIO, where A is the number

 of particles per individual, so that X = Aa (that is, the rate of

 production of particles is the number produced over the entire

 incubation period divided by the incubation period). Substi-

 tuting PO = -Io into Eq. 42 gives

 a

 v-IOSo

 RQt)= [1(-em't)

 [a

 v-Io - a

 a

 - a (l- 1vasot

 VXIh i i a

 which is Eq. 14 in the main text.
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