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abstract: Many mobile organisms exhibit resource-dependent
movement in which movement rates adjust to changes in local re-
source densities through changes in either the probability of moving
or the distance moved. Such changes may have important conse-
quences for invasions because reductions in resources behind an
invasion front may cause higher dispersal while simultaneously re-
ducing population growth behind the front and thus lowering the
number of dispersers. Intuiting how the interplay between population
growth and dispersal affects invasions is difficult without mathe-
matical models, yet most models assume dispersal rates are constant.
Here we present spatial-spread models that allow for consumer-
resource interactions and resource-dependent dispersal. Our results
show that when resources affect the probability of dispersal, then the
invasion dynamics are no different than if resources did not affect
dispersal. When resources instead affect the distance dispersed, how-
ever, the invasion dynamics are strongly affected by the strength of
the consumer-resource interaction, and population cycles behind the
wave front lead to fluctuating rates of spread. Our results suggest
that for actively dispersing invaders, invasion dynamics can be de-
termined by species interactions. More practically, our work suggests
that reducing invader densities behind the front may be a useful
method of slowing an invader’s rate of spread.

Keywords: biological invasion, nonindigenous species, integrodiffer-
ence equations, resource-dependent dispersal, spatial spread.

Many mobile organisms increase their feeding efficiency
through resource-dependent movement in which foraging
movements are adjusted in response to local resource den-
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sities (Sutherland et al. 2002). Two important ways by
which resources may affect movement are first by affecting
the probability of moving, typically such that movement
is more likely when resources are lower. For example, in-
sects that disperse by ballooning often choose whether to
balloon on the basis of local resource availability (Hunter
and Lechowicz 1992; Rhainds et al. 2002), but the distance
that they disperse is determined only by wind speed and
other features of the physical environment. Second, re-
sources may affect the distance moved. For example, in
area-restricted search, consumers in areas with relatively
high resources move less frequently, turn more frequently,
and/or reduce their speed of movement. Such consumers
therefore tend to disperse shorter distances in areas where
resources are at higher density (Kareiva and Odell 1987).
This behavior has been observed in diverse animal taxa,
including nematodes, insects and other arthropods, fish,
birds, mammals, and even bacteria and protists (for partial
introductions to the vast literature on this subject, see Segel
1977; Kareiva and Odell 1987; Morris and Kareiva 1991;
Keasar et al. 1996; Turchin 1998; Fryxell et al. 2004).

Intuitively, one might expect that these widespread be-
haviors would influence the rate at which exotic species
invade new territory. At an invasion front, individuals en-
countering higher resources should disperse less frequently
and not as far, while those behind the front, experiencing
reduced resource concentrations because of their own
feeding, should disperse more frequently and farther,
bringing more of them to the front, where they can con-
tribute to population spread. Lower resource densities be-
hind the front, however, might also restrict population
growth through either lower birth rates or higher mortality
rates, thereby reducing the number of individuals available
to disperse toward the front. Intuiting the effects of
resource-dependent dispersal on invasions is thus not a
trivial task; in fact, it can be difficult to intuit the
population-level consequences even of far simpler move-
ment behaviors (Holmes et al. 1994).

One way to deduce the population-level consequences
of movement behaviors for invasion dynamics is by using
mathematical models (Murray 1991). Indeed, models are
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widely used to analyze invasion data (Lubina and Levin
1988; Clark et al. 1998) and to make inferences about the
long-term dynamics of spread from short-term ob-
servations of movement (Kot et al. 1996; Dwyer et al.
1998). Surprisingly, however, despite much research on
consumer-resource dynamics (Murdoch et al. 2003) and
despite the ubiquity of resource-dependent movement
(Sutherland et al. 2002), almost all invasion models assume
that dispersal rates are unaffected by resources (Morris
and Dwyer 1997; Turchin 1998). The population-level im-
plications of consumer-resource interactions and resource-
dependent dispersal for invasion dynamics are therefore
poorly understood. In this article, we use models to ex-
plore how consumer-resource interactions and resource-
dependent dispersal together affect invasions. We consider
two different models of resource-dependent dispersal, the
first with a resource-dependent probability of dispersal
and the second with a resource-dependent distribution of
dispersal distances. Although most studies of resource-
dependent dispersal measure movement behavior over
short time intervals, such short-term behaviors are nev-
ertheless likely to lead to effects of resources on dispersal
over an entire generation, which in turn may affect long-
term population dynamics (Kareiva and Odell 1987). In
both models, we therefore incorporate dispersal in terms
of the distance moved in a generation. The questions that
we ask are, then, what are the consequences of resource-
dependent dispersal for the spread of invading consumers,
and how do these consequences depend on the details of
how resources affect dispersal? As we will show, when
resources affect the distribution of dispersal distances, then
the population dynamics behind the front can affect the
invasion velocity, and invasion speeds can fluctuate. As we
describe in the “Discussion,” this result may have impor-
tant implications both for our understanding of spatial
spread and for efforts to control the rate of spread of exotic
species.

Methods

Our previous modeling work suggested that resource-
dependent dispersal would have no effect on species’ in-
vasions (Morris and Dwyer 1997). The models that we
used, however, followed the vast majority of spatial-spread
models in making restrictive assumptions (Fisher 1937;
Murray 1991; Turchin 1998). First, most models assume
that dispersal is diffusive, which effectively means that dis-
persal occurs in the form of many short jumps. In the
case of simple diffusion, one of the consequences of this
assumption is that dispersal distances are normally dis-
tributed. For many organisms, however, distributions of
dispersal distances are strongly leptokurtic, meaning that
there is an excess of long-distance movements (Kot et al.

1996). Second, our previous model and most others have
been formulated in continuous time so that reproduction
occurs continuously; many invasive species, however, have
discrete generations or discrete breeding periods (Andow
et al. 1990; Shigesada and Kawasaki 1997). As a result of
these two assumptions, organisms in our previous models
dispersed only up to the invasion front, where resources
were high, and consequently there was no effect of re-
sources on invasion dynamics (Morris and Dwyer 1997).
In nature, however, organisms with resource-dependent
dispersal may instead make dispersive leaps from behind
the front to well in advance of the front. The main con-
clusion of our previous work, that resource-dependent
movement does not affect invasions, may therefore have
depended on assumptions that hold for only a small num-
ber of species. In the work that we present here, we instead
use integrodifference equations, which assume discrete
generations, and allow for the possibility of longer-distance
dispersal movement events (Kot et al. 1996; Neubert et al.
2000; Wang et al. 2002; Medlock and Kot 2003).

For simplicity, we treat space as a one-dimensional
variable on the grounds that qualitative results for one-
dimensional models generally also hold for two-
dimensional models (Murray 1991). Our models then keep
track of the density of a resource Rt(x) and of a consumer
Ct(x) as functions of generation t and distance x from
where the consumer was introduced. We assume that the
effect of the invading consumer is to reduce Rt(x) but that
the resource regrows in the consumer’s absence. To isolate
the effects of resource-dependent consumer dispersal, we
assume that the resource is sessile so that only the con-
sumer disperses. Our equation for local resource dynamics
is then

rR (x) �sC (x)t tR (x) p exp . (1)t�1 [ ]a � R (x) (1 � smC (x))t t

Here we assume that in the absence of the consumer, the
resource follows Beverton-Holt dynamics (Gurney and
Nisbet 1998); r is thus the reproductive rate of the resource
at low density in the absence of consumers, while a de-
termines how net resource growth is affected by density,
again in the absence of consumers. The advantage of the
Beverton-Holt model is that it ensures that the resource
has stable population dynamics ahead of the advancing
front of consumers, thereby eliminating an unnecessary
complication. Other discrete-time formulations, such as
the Ricker model or the discrete-time logistic (Gurney and
Nisbet 1998), do not share this property; preliminary in-
vestigations, however, have suggested that substituting ei-
ther the Ricker model or the discrete-time logistic gives
similar results. To describe consumer feeding, we use what
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is essentially a host-parasitoid attack function with inter-
ference among consumers so that the fraction of resources
surviving the consumer is .exp [(�sC (x))/(1 � smC (x))]t t

This function describes the fraction of resources that avoid
being consumed and that then go on to grow following
the Beverton-Holt model.

This host-parasitoid attack function has the advantage
that it can be derived directly from first principles of con-
sumer attack rates and handling times (Beddington 1975)
such that the parameters m and s describe features of con-
sumer feeding behavior. Also, the nonspatial version of
this model has been studied intensively (Tang and Chen
2002). This is a useful feature because, as we will describe,
the dynamics of the nonspatial version have important
implications for the results of one of our spatial models.
Most important, there is good evidence that a version of
the model provides a good description of the population
dynamics of at least some real organisms (Turchin et al.
2003). In future work, we hope to consider other con-
sumer-resource interaction terms; for now, however, this
model provides a convenient starting point. The con-
sumer’s fecundity function f(Rt(x), Ct(x)) is then

�sC (x)tf(R (x), C (x)) p fR (x) 1 � exp . (2)t t t { [ ]}(1 � smC (x))t

Here f is the maximum value of the consumer’s repro-
ductive rate, so resources that are attacked are converted
into consumers at rate f. In what follows, we eliminate
the parameters a and s by rescaling resource and consumer
densities according to and∗ ∗R (x) { R (x)/a C (x) {t t t

. We then define and to be thesC (x) h { r/a l { f/at

scaled growth rates of the resource and the consumer,
respectively. In the interests of brevity, in what follows we
refer to h and l simply as growth rates, and we refer to
m as the consumer-interference parameter.

Our models of the temporal dynamics are thus based
on well-known consumer-resource models. What remains
is to specify how consumers disperse. As we have de-
scribed, we consider two models that differ in whether
resources affect the probability that a consumer disperses
or the distance that a consumer disperses. Because the only
difference is in consumer dispersal, both models use res-
caled versions of equations (1) and (2) to describe resource
and consumer dynamics, respectively. The full consumer
equation for the changing dispersal-fraction model is then

�

C (x) p k(Fx � yF)g(R (y))f(R (y), C (y))dyt�1 � t t t

��

� [1 � g(R (x))]f(R (x), C (x)), (3)t t t

Here f(Rt(y), Ct(y)) is described by equation (2), and we
have assumed that population growth precedes dispersal;

is the dispersal kernel, which describes the dis-k(Fx � yF)
tribution of distances dispersed over a generation; and
g(Rt(y)) is the probability that a consumer at point y dis-
perses such that the probability of dispersal declines ex-
ponentially from a maximum of as resource levels in-ĝ

crease. The integral term on the right-hand side of
equation (3) therefore represents dispersers arriving at x
from all other locations, while the second term represents
individuals produced at x that do not disperse. For this
model, the rate of spread depends only on conditions at
the front, so the functional form of g(Rt(y)) has little effect
on our results (see app. A). The dispersal kernel can be
any probability density function, but in what follows, we
generally consider only a “Laplace” or “double-exponen-
tial” kernel, in which the probability that an individual
located between y and disperses an absolute dis-y � dy
tance isFx � yF

b
�bFx�yFk(Fx � yF)dy p e dy. (4)

2

Here b is the inverse of the one-sided mean dispersal dis-
tance. Note that because the dispersal kernel depends only
on the absolute value of the difference between x and y,
the distribution of dispersal distances is independent of a
dispersing individual’s location (but see Van Kirk and
Lewis 1999 for a discussion of how, on a finite domain,
the kernel may depend explicitly on x and y because of
interactions between the disperser and the boundary). In
practice, we rescale space to eliminate the parameter b.

The changing dispersal-distance model instead follows
the equation

�

C (x) p h(R (y), x � y )f(R (y), C (y))dy. (5)F Ft�1 � t t t

��

Here , the probability of dispersing ah(R (x), Fx � yF)dyt

distance over a generation, again follows a LaplaceFx � yF
distribution, but now it depends not just on the distance
but also on the resource density at the starting location y.
Specifically, we assume that the probability that an indi-
vidual located between y and disperses a distancey � dy

isFx � yF

bR (y)t �bR (y)Fx�yFth(R (y), x � y )dy p e dy. (6)F Ft 2

The one-sided mean dispersal distance is thus proportional
to the inverse of local resource quality, and so dispersal
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Figure 1: Model results for the changing dispersal-fraction model, equa-
tions (1) and (3). A, B, Consumer and resource densities versus distance
from the point of introduction x. , and so forth, indicates thet p 20
number of generations that have elapsed. Note that, for clarity, B has a
different scale than A. Parameters for A and B are as follows: resource
growth rate , consumer-interference parameter , maximumh p 1.7 m p 4
probability of dispersing , consumer reproductive rate . C,ĝ p 0.5 l p 2
Snapshot of consumer and resource densities for a set of parameter values
that gives trains of waves. Here , , , , andˆh p 8 m p 0.15 g p 0.5 l p 2

.t p 120

distances increase as resources decline. Again, b can be
eliminated by rescaling space.

In appendix A, we use the method of Kot et al. (1996)
to derive an expression for the rate of invasion, or the
“wave speed,” of the changing dispersal-fraction model,
equations (1) and (3), by making the usual assumption
that the population dynamics behind the front have no
effect on the wave speed. This expression turns out to
accurately predict the wave speed in numerical integra-
tions; for the changing dispersal-distance model, equations
(1) and (5), however, the dynamics behind the front
do affect the wave speed, and so a similar calculation is
not possible. Moreover, because the changing dispersal-
distance model has a spatially inhomogeneous kernel, the
only method for numerically analyzing that model of
which we are aware uses the trapezoidal rule for calculating
the integral in equation (5). We therefore used this method
to numerically integrate both models. In all cases, we began
these integrations by setting resource levels to their
consumer-free equilibrium everywhere in space and then
setting consumer density near the origin to a low level.
Also, in calculating the rate of spread of the consumer, we
must pick a point that defines the front of the wave.x̂
Because for both models the front declines gradually with
increasing distance, there is no natural choice of , andx̂
so we chose such that . For the parameterˆ ˆx C (x) p 0.01t

values that we used, this choice avoids densities that are
so low as to be difficult to measure, but it is still low
enough to qualify as being at the front of the wave. More-
over, the shape of the front for both models is similar
across parameter values, and so our results are indepen-
dent of the value of as long as the consumer density atx̂

is not too large.x̂

Results

As in most invasion models, the changing dispersal-
fraction model shows traveling waves with constant shape
and velocity (fig. 1). If the resource or consumer growth
rates h and l are relatively low and the consumer-
interference term m is relatively high, then consumer den-
sity forms an advancing front that trails off to high levels
behind the front (fig. 1A, 1B). In contrast, if h or l is
relatively high and m is relatively low, then resources de-
cline rapidly behind the wave, and consumer density forms
an advancing peak (fig. 1C). Moreover, in this latter case,
trains of waves appear behind the initial peak such that
the initial peak of invasion is repeated behind the front.
In either case, speeds calculated by numerical integration
of equations (1) and (3) are very close to the wave speed
calculated by assuming that population dynamics behind
the front do not matter (fig. 2; see app. A for the calcu-
lation). Figure 2A shows that because the invasion fails

altogether when , the wave speed is rather sensitivel ! 1
to the consumer reproductive rate l when l is near 1 and
thereafter increases as roughly the natural log of l. A sim-
ilar result holds for the effect of the resource growth rate
h; indeed, although in the interests of brevity we do not
show it here, figure 2A would look the same if we instead
plotted wave speed against (app. A). The fractionh � 1
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Figure 2: Wave speed calculated by numerical integration compared with the theoretical wave speed calculated in appendix A for different values
of l (A) and (B). Remaining parameters are as in figure 1A and 1B. Wave speed is expressed as distance moved per generation. Because distanceĝ

is scaled so as to be dimensionless, no units are given on the vertical axis.

dispersing at the front has a more modest effect on theĝ

wave speed (fig. 2B). In general, these results are similar
to those of Kot et al. (1996), with the difference that in
our model, the wave speed is affected by the probability
of dispersing when consumer density is low, . In fact, ifĝ

we set and if we define the effective consumerĝ { 1
reproductive rate to be , the wave speed in ourl # (h � 1)
model is identical to the wave speed in the Kot et al. (1996)

model; in turn, this means that with a normal dispersal
kernel, our model would show the same wave speed as
the classic Fisher model (Fisher 1937). Significantly, the
consumer-interference term m never has any effect on the
rate of spread of the consumer because it affects only the
dynamics behind the front.

The changing dispersal-distance model also shows trav-
eling waves, but the behavior of these waves is dramatically
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Figure 3: Wave speeds versus time for the changing dispersal-distance model, equations (1) and (5), for different values of the consumer-interference
parameter m and the consumer growth rate l. In all cases, the resource growth rate . A, In all cases, . B, In all cases, . Waveh p 3 l p 4 m p 0.2
speed is expressed as dimensionless distance moved per generation.

different. The basic difference is that, as figure 3A shows,
the consumer-interference parameter m strongly affects the
wave speed. Moreover, if either the resource growth rate
h or the consumer reproductive rate l is sufficiently high
relative to m, then the wave speed fluctuates, as shown in
figure 3. Because m becomes important only after the con-
sumer has become established, it therefore appears to be
the case that, in contrast to the changing dispersal-fraction
model, for this model, the population dynamics behind
the front affect the rate of spread of the invader. Moreover,
in general, the wave speeds for the changing dispersal-
distance model are much higher than for the changing
dispersal-fraction model, even when the nondispersal pa-
rameters are the same. To see this, note first that h is the
same in figures 2A and 3A. Figure 2A then shows that the
wave speed for the changing dispersal-fraction model is
almost 3 when ; in contrast, even though inl p 3 l p 3

figure 3A, the average wave speed instead ranges from
approximately 25 to approximately 80, depending on the
value of m. Allowing resource levels to affect the distance
dispersed thus leads to much higher wave speeds and al-
lows the population dynamics behind the front to affect
the wave speed.

As we discuss further in appendix B, the fluctuations
in the rate of spread do not appear to be artifacts of our
numerical approximation scheme but instead are appar-
ently a basic feature of the model. Understanding why the
wave speed fluctuates, however, is difficult. One possible
explanation is that a consumer-resource cycle may be oc-
curring behind the wave front. Indeed, in all cases in which
the wave speed fluctuates, trains of waves appear behind
the front, similar to the wave trains in figure 1C. We there-
fore suspected that periods of high consumer density be-
hind the wave might cause the wave to accelerate, while
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Figure 4: Comparison of wave speed to the consumer-resource population dynamics behind the wave. A, Consumer and resource densities averaged
over 100 distance units behind the wave front. Parameters are the same for A and B: resource growth rate , consumer growth rate ,h p 3 l p 5
species interaction parameter . B, Wave speed versus time for the changing dispersal-distance model, equations (1) and (5). Wave speed ism p 0.2
expressed as dimensionless distance moved per generation.

the opposite conditions would cause the wave to decel-
erate. To look for such cycles, we averaged resource and
consumer densities behind the wave according to

x̂

1
R̂ { R (x)dx, (7)t � tL

x̂�L

x̂

1
Ĉ { C (x)dx, (8)t � tL

x̂�L

where and are the average densities of resources andˆR̂ Ct t

consumers, respectively, over a distance L behind the front

and is again defined as the leading edge of the front. Inx̂
general, we expect that the influence of the population
dynamics behind the front will decline with increasing
distance behind the front, but there is no obvious choice
of L, and so we arbitrarily used .L p 100

Figure 4A shows the fluctuations in and , suggestingˆR̂ Ct t

that there is in fact some kind of consumer-resource-type
oscillation behind the wave front. Indeed, in this particular
case, it appears that the amplitude of the fluctuations is
increasing. Moreover, the fluctuations in the resource den-
sity seem to be closely synchronized with the fluctuations
in the wave speed (fig. 4); that is, peaks and troughs in
resource density occur at nearly the same time as peaks
and troughs in the rate of spread. Because peaks in resource
density correspond to troughs in consumer density, how-
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ever, the most likely explanation is that the rate of spread
is driven by the number of consumers, with a slight delay.
When the number of consumers rises to a peak, shortly
afterward the rate of spread accelerates because more con-
sumers are available to disperse, and when the number of
consumers falls to a trough, shortly afterward the rate of
spread decelerates because fewer consumers are available
to disperse.

To further explore the importance of consumer-resource
cycles for velocity oscillations, we compared the dynamics
of this model with the dynamics of the analogous non-
spatial model. Simulations showed that the parameter val-
ues that give oscillatory velocities in figure 3 give limit
cycles in the nonspatial model and that parameter values
that give constant velocities in the spatial model give a
stable equilibrium in the nonspatial model. As an example
of this behavior, figure 5 shows output for two sets of
parameter values on either side of the limit-cycle boundary
for the nonspatial model. In figure 5A, the consumer
growth rate , which is below the critical value ofl p 3.1

, and the oscillations appear to damp out. In figurel ≈ 3.2
5B, , which is above the critical value, and thel p 3.8
amplitude of the oscillations appears to be increasing.
These results are consistent with the hypothesis that the
boundary between stable cycles and a point equilibrium
for the nonspatial model is also the boundary between a
constant and a fluctuating wave speed for the spatial
model. As discussed further in appendix B, the simulations
of the spatial model are so time intensive that we have
not yet found a case in which the amplitude of the velocity
oscillations has clearly stabilized. If the cycles in the spatial
model are in fact unstable, then the amplitude of velocity
fluctuations will increase without bound; nevertheless,
even if such instabilities eventually arise, clearly the cycles
persist long enough to be biologically important.

Discussion

Our models suggest that resource-dependent dispersal can
have significant consequences for invasions but that the
effect depends on the details of how resources affect dis-
persal. If resources affect only the probability of dispersal,
then spread rates are essentially no different than if dis-
persal is completely unaffected by resources (fig. 2). If
resources instead affect the distance dispersed, however,
then the spread rate is much higher, and complex pop-
ulation dynamics behind the wave front can lead to fluc-
tuations in the rate of spread (figs. 3–5). This behavior is
strikingly different from that of other models of spatial
spread. In particular, two basic results of most invasion
models are that spread rates will be unaffected by the
dynamics behind the front and that long-term wave speeds
are constant (Fisher 1937). Here we have shown that in

fact neither conclusion is general. Moreover, although
some other models show modest effects of population dy-
namics behind the front on the wave speed (Lewis and
Kareiva 1993; Shigesada and Kawasaki 1997; Wilson and
Richards 2000), in no case are there sustained fluctuations
in wave speeds. The fluctuating wave speed and the strong
effects of population dynamics behind the front in our
model thus appear to be novel results.

These results are of more than mere mathematical in-
terest, however, because our changing dispersal-distance
model is appropriate for a large class of organisms. To
begin with, organisms with discrete generations are com-
mon in temperate zones, especially among insects, an im-
portant class of invading species (Andow et al. 1990). We
suspect that the results of our models also hold for or-
ganisms with overlapping generations but discrete breed-
ing seasons, another large class of invading species, because
models with overlapping generations but discrete breeding
often have dynamics that are as complicated as models
with discrete generations (Gurney and Nisbet 1998). More
critically, our assumption that resources affect dispersal
distances holds for many organisms. As we described in
the introduction to this article, many species show area-
restricted search (Segel 1977; Kareiva and Odell 1987;
Morris and Kareiva 1991; Keasar et al. 1996; Turchin 1998;
Fryxell et al. 2004), and in such cases dispersal distances
are likely to be high over both short and long time scales
when resources are low. In addition, there are many ex-
amples in the literature of direct evidence for effects of
resources on dispersal distances (Reznik 1991; Kuussaari
et al. 1996; Goodwin and Fahrig 2002; Pasinelli and Wal-
ters 2002; Byholm et al. 2003; Cronin 2003). Indeed, recent
work in G. Dwyer’s lab has shown that resources affect
the distance that treehoppers Publilia concava (Homop-
tera: Membracidae) move within patches of narrow-leaved
goldenrods Solidago altissima (S. M. Harrell Yee and G.
Dwyer, unpublished manuscript). Nevertheless, it is in-
herently more difficult to quantify the distance dispersed
than to quantify the probability of dispersing (Harrison
and Karban 1986; Hunter and Lechowicz 1992; Nealis and
Lomic 1994; Herzig 1995; Rhainds et al. 2002; Rhainds
and Shipp 2003). Indeed, behaviors such as area-restricted
search are usually studied over time periods substantially
shorter than a generation. Nonetheless, because whole-
generation dispersal distances are the cumulative result of
shorter-term movement behaviors, it is highly likely that
short-term movements in response to resources translate
into resource-dependent dispersal distances over a gen-
eration. Given the logistic difficulties of measuring
resource-dependent dispersal distances, we suspect that
this type of dispersal is even more common than the lit-
erature indicates.

The second reason why the results of the changing
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Figure 5: Wave speeds for the changing dispersal-distance model, equations (1) and (5). In both A and B, the resource growth rate , and theh p 3
species interaction parameter . A, Here the consumer growth rate . This value is on the stable side of the limit-cycle boundary form p 0.2 l p 3.1
the nonspatial version of the model. Note that the oscillations appear to damp out with time. B, Here the consumer growth rate . Thisl p 3.8
value is on the cyclic side of the limit-cycle boundary for the nonspatial version of the model. Note that the amplitude of the oscillations appears
to increase with time. Wave speed is expressed as dimensionless distance moved per generation.

dispersal-distance model are important is that the model
shows that the effects of resources on distances dispersed
can have striking biological consequences. The first of
these consequences is that invasions can be a multispecies
phenomenon. That is, the effect on the wave speed of the
consumer-interference parameter m, which essentially
modulates the interaction between the consumer and the
resource, shows that a species invasion can depend on

species interactions. In contrast, the lack of any such effects
in classical models has led to the widespread view that
invasions are fundamentally a single-species phenomenon
(Murray 1991). Moreover, this result has direct practical
implications for the management of invading species. Be-
cause the invasion speed can be affected by conditions
behind the front, management efforts aimed at reducing
the density of an invader behind the front not only may
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mitigate its local impact but also may have the added
benefit of decreasing the rate at which it spreads. This is
an important point because efforts to slow the spread of
invading species generally focus only on dynamics at the
front (Sharov et al. 2002). In addition, if resources affect
dispersal distances, then efforts to predict invasion speeds
that are based only on data collected at the wave front
may not give reliable results. In such cases, accurate pre-
diction of invasion speeds will also require that we quantify
how resource levels change behind the wave. Although
estimating the parameters of resource-dependent models
thus requires more data, our work suggests that the in-
crease in accuracy of the resulting predictions may be sub-
stantial. Also, one possible test of our model would be to
reduce the density of an invading consumer by introducing
a predator or pathogen behind the wave front as a means
of biological control. If such an introduction leads to a
reduction in the rate at which the consumer is spreading,
then the reduction in spread rate would support the model.
To our knowledge, such a test has not yet been carried
out. Finally, the occurrence of fluctuating velocities of
spread in the changing dispersal-distance model may pro-
vide an explanation for at least some cases of changing
wave speeds (Andow et al. 1990; Leibhold et al. 1992;
Shigesada and Kawasaki 1997). Again, however, a thor-
ough test of this prediction will likely require additional
data because to our knowledge, time series of invasion
rates that are long enough to show sustained fluctuations
(figs. 3, 5) do not yet exist.

The difference in the outcomes of our two models shows
that modest differences in behavior can have significant
population-level consequences. This result emphasizes the
important role that mathematical models can play in guid-
ing our understanding of spatial phenomena. In particular,
as we described in the introduction to this article, it seems
intuitively reasonable that resource-dependent dispersal
will affect the rate of spread of invasions. Comparison of
our previous work (Morris and Dwyer 1997) with the work
that we present here, however, shows that the effects of
resource-dependent dispersal are negligible when repro-
duction and movement occur continuously and thus that
time delays play an important role in modulating the ef-
fects of dispersal. More generally, our work suggests that
an important future research direction for models of in-
vasions is the further investigation of discrete-generation
models in which densities affect dispersal distances. In-
deed, the difficulty of numerically integrating the changing
dispersal-distance model argues for the development of
more sophisticated numerical methods (app. B). That said,
it is worth noting that our basic results are the same if we
instead use a model based on discrete-time versions of
logistic growth and Lotka-Volterra predator-prey functions
(G. Dwyer and W. F. Morris, unpublished manuscript).

Also, because we are interested in general theoretical re-
sults, we have used simple dispersal kernels. For practical
applications, it may be useful to consider a model in which
area-restricted search over the short term, which is typi-
cally described by continuous-time partial differential
equations (Segel 1977; Kareiva and Odell 1987), is trans-
lated into dispersal over the course of a generation, as in
our integrodifference equation models. A useful feature of
such a hybrid model is that it would be easier to param-
eterize with existing data. That is, most data showing ef-
fects of resources on movement distances do not track
organisms for entire generations because as we have de-
scribed, such tracking is often logistically impractical. A
hybrid model would therefore make it easier to relate com-
plex behaviors to long-term spread rates.
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APPENDIX A

Calculating the Minimum Wave Speed for the
Changing Dispersal-Fraction Model

Here we follow Kot et al. (1996, app. A) in calculating the
invasion speed for the model, equations (1) and (3), under
the assumption that the dispersal kernel k(z) has a mo-
ment-generating function. First, given our assumption that

, and given that the equilibriumg(R (x)) p g exp (�R (x))t 0 t

density of the resource ahead of the wave is , weh � 1
define to be the fraction dispersingĝ p g exp [�(h � 1)]0

far ahead of the wave. Second, if the invasion speed is
determined only by the behavior of the population near
the front (where resources are abundant and consumers
are scarce), we can linearize equation (3) near the con-
sumer-free equilibrium to yield(R (x), C (x)) p (h � 1, 0)t t

�

ˆC (x) p k(x � y)g(h � 1)lC (y)dyt�1 � t

��

ˆ� (1 � g)(h � 1)lC (x). (A1)t

If the invasion proceeds as a wave with fixed shape and
constant speed c, then . Given this fact,C (x) p C (x � c)t�1 t
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and with the conjecture that the wave front is exponentially
bounded so that , equation (1) becomes�sxC (x) ≈ et

�

sc s(x�y)ˆe p g(h � 1)l k(x � y)e dy�
��

ˆ� (1 � g)(h � 1)l. (A2)

Making the change of variable and recognizingu { x � y
that is the moment-generating func-� suM(s) { e k(u)du∫��

tion of k(z), we arrive at

sc ˆ ˆe p g(h � 1)lM(s) � (1 � g)(h � 1)l. (A3)

Taking the derivatives of both sides of equation (3) with
respect to s yields , and combiningsc ′ˆce p g(h � 1)lM (s)
this expression with equation (3) gives the invasion speed
as a function of s:

′ĝM (s)
c p . (A4)

ˆ ˆgM(s) � 1 � g

Note that for and invader growth rate equal toĝ { 1
, equations (3) and (4) are equivalent to equationsl(h � 1)

(9a) and (9b) of Kot et al. (1996).
So far, we have made no assumptions about the shape

of the kernel. To proceed further, we specify that
. Because we can eliminate bk(z)dz p (b/2) exp (�b FzF)dz

by an appropriate scaling of the spatial dimension, how-
ever, our expressions for the moment generation function
and its derivative are and2 ′M(x) p 1/(1 � s ) M (s) p

. Equation (4) therefore becomes22s/(1 � s )

2s
c p . (A5)

2 2 2ˆ(1 � s ) � [(1/g) � 1](1 � s )

Given values of , h, and l, we can compute s by sub-ĝ

stituting equation (5) in place of c in equation (3) and
using a root-finding algorithm to obtain s. Substituting
the resulting value into equation (5) yields the invasion
speed.

APPENDIX B

Numerical Instabilities in the Changing
Dispersal-Distance Model

A key feature of the fluctuations in the wave speed is that
they are somewhat irregular in appearance even though
the cycles in the nonspatial version of the model are, in
contrast, quite regular. It was important to consider
whether this irregularity was due merely to numerical er-

ror, because such errors might also explain the occurrence
of wave speed fluctuations themselves. Ultimately, it is not
possible to make such a determination without a math-
ematical proof, but such proofs are beyond the scope of
our work, and so we tested our numerical routine in the
following way. Our numerical integrations of the model
require that we approximate the spatial domain of the
models using a discrete grid. As the number of grid points
increases for a given spatial domain, the resolution of the
grid increases, and thus the error is reduced. Reassuringly,
for spatial domains large enough to permit 80 generations
of spread, grid sizes of or points gave5 52 # 10 2.5 # 10
essentially identical results to grids of points. Nev-51 # 10
ertheless, simulations with that many grid points often
took more than 10 days for a single run using one node
of a Beowulf computer cluster. It was therefore not prac-
tical to carry out our integrations for more than 120 gen-
erations, and so we do not know whether the limit cycles
in our model are stable, or “super-critical,” as opposed to
unstable, or “subcritical” (Kuznetsov 1995). To our knowl-
edge, however, most data sets for invading species are
much shorter than our model runs, suggesting that longer
runs would be of limited biological interest.
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