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Using simple models to predict virus epizootics in gypsy 
moth populations 

GREG DWYER and JOSEPH S. ELKINTON 
Department of Entomology, University of Massachusetts, Amherst, MA 01003, USA 

Summary 

1. Biologists have made little use of recent advances in the mathematical theory of 
the dynamics of insect pathogens, because of difficulties with parameter estimation 
and misgivings about the simplicity of the models in question. 
2. We use an existing simple model for the dynamics of insect pathogens, slightly 
modified both to provide greater accuracy and to allow for more straightforward 
parameter estimation. 
3. Focusing on the nuclear polyhedrosis virus (NPV) of gypsy moth (Lymantria 
dispar (L.)), we estimated each of the model parameters independently, estimating 
three of the four model parameters from the literature. 
4. To estimate the rate of transmission, we present an experimental protocol 
which involves fitting a reduced version of the model to data from a small-scale 
transmission experiment. 
5. Without circularity or curve-fitting, we tested the model with literature data 
giving initial densities and weekly NPV mortality for epizootics in eight gypsy moth 
populations on 4-9 ha plots in Massachusetts, USA. 
6. The model predictions are reasonably accurate for five of the eight populations, 
suggesting that gypsy moth NPV dynamics within a season are driven by a small 
number of biological processes. 
7. The three populations for which the model did poorly began the season with 
low host densities yet gave rise to more severe epizootics than predicted by the 
model. This indicates that standard assumptions about disease transmission may 
not hold for gypsy moth NPV dynamics at low densities; specifically, we suspect 
that density-related changes in larval behaviour result in higher NPV transmission 
at low density. 
8. These results suggest that simple models of the dynamics of animal pathogens 
can be used to make quantitative predictions about disease dynamics in the field. 

Key-words: Lymantria dispar, NPV, mathematical model, host-pathogen 
dynamics, disease transmission. 

Journal of Animal Ecology (1993) 62, 1-11 

Introduction 

The mathematical theory of infectious diseases of 
animals has made important advances in the past 13 
years, beginning with Anderson and May's seminal 
papers (1978, 1979; Levin & Pimentel 1981; Murray, 
Stanley & Brown 1986; Brown 1984; Andreasen 
1989; Hochberg & Holt 1990). Surprisingly, how- 
ever, this theory has been little used; although field 
studies of animal diseases are increasingly common 
(Gill & Mock 1985; Dobson & Hudson 1986; Myers 
1990; Dwyer 1991a), field studies related to theory 
are extremely rare. This under-utilization is due 
primarily to problems of model simplicity and para- 

meter estimation. First, continued research on 
pathogens has revealed a variety of factors that may 
affect disease dynamics; since few of these factors 
are included in simple mathematical models, bio- 
logists have been mistrustful of the models (Onstad 
et al. 1990; Onstad & Carruthers 1990). Second, 
because the models in question are quite simple, 
their parameters can only rarely be interpreted in 
terms of easily measureable biological quantities 
(Anderson & May 1980). This has made it difficult 
for biologists to estimate model parameters, so that 
quantitative application of the models has been 
difficult for non-specialists. 

Insect virology provides a clear example of these 
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problems. Anderson & May (1980, 1981) presented 
one of the first simple mathematical models for the 
dynamics of insect pathogens. Their model is 

dS d = r(S + I)-vPS eqn 1 
dt 
dI - = vPS-(x( + b)I eqn 2 

dP 
- =kI-[[+v(S+I)]P eqn 3 
dt 

where S is the density of susceptible hosts, I is the 
density of infected hosts, P is the density of pathogen 
particles, r is the reproductive rate of the host, v 
is the transmission coefficient, aX is the rate of dis- 
ease induced mortality, b is the rate of non-disease 
mortality, k is the rate of production of pathogen 
particles by infected hosts, t is the decay rate of the 
virus, and t is time. 

This model includes only a small number of pro- 
cesses: host density-independent reproduction and 
death, host disease-induced death, pathogen pro- 
duction by infected hosts, the breakdown of the 
pathogen in the environment, consumption of the 
pathogen by the host, and disease transmission. 
The model thus ignores much of what biologists 
have discovered can influence the course of a virus 
disease in an individual host. For example, host 
stage can affect the susceptibility (Watanabe 1987; 
Hochberg 1991) and infectiousness (Thompson & 
Scott 1979; Kaupp 1983; Teakle & Byrne 1989; 
Dwyer 1991a) of individual hosts. Chemical con- 
stituents of foliage consumed by hosts also can affect 
the susceptibility of individual hosts (Keating & 
Yendol 1987; Keating, McCarthy & Yendol 1990). 
Temperature can affect the time between host 
infection and death (Watanabe 1987). 

Moreover, the difficulty of interpreting the model 
parameters makes parameter estimation difficult. 
The transmission parameter v is especially pro- 
blematic. Since, for insect viruses, transmission 
occurs when the host accidentally consumes the 
pathogen on contaminated foliage, transmission 
must be affected by, among other things, host be- 
haviour. Although it may be possible to translate 
measurements of host behaviour into a value for v, 
it is not obvious how one would go about doing so. 
Similarly, since susceptibility affects transmission, 
the transmission constant v must be affected by host 
stage, host-plant foliage chemicals, and so forth, yet 
it is unclear how these factors could be translated 
into a value of v. 

Our contention is that the problem of parameter 
estimation has kept many biologists from seeing the 
usefulness of simple mathematical models of insect 
pathogens. Moreover, theoreticians themselves 
have focused on long-term predictions (Anderson 
& May 1981). Since long-term data sets are rare, 
this focus has led to a lack of comparisons between 

theoretical predictions and the long-term behaviour 
of real systems that has further impeded progress. 
In the present paper we attempt to address these 
problems by: (i) slightly modifying Anderson & 
May's (1981) model to make interpretation of the 
parameters more straightforward; (ii) estimating 
each of the parameters for the nuclear polyhedrosis 
virus (NPV) of gypsy moth (Lymantria dispar), 
presenting along the way a protocol for estimating 
the transmission parameter v; (iii) using the model 
to predict disease epizootics within a season; (iv) 
comparing the model predictions to replicated time 
series of gypsy moth NPV mortality within a season. 
Since our model is only slightly different from 
equations 1-3, we have thus intentionally omitted 
many biological details; by doing so, we can assess 
whether these details are needed, or learn when they 
become important. Our model thus acts as a kind 
of null hypothesis, rejection of which may be ac- 
companied by the development of new hypotheses. 

Methods 

NATURAL HISTORY OF THE 

HOST-PATHOGEN SYSTEM: GYPSY MOTH 

AND ITS NUCLEAR POLYHEDROSIS VIRUS 

Gypsy moth is an economically important defoliator 
of deciduous forests in north-eastern North America, 
and it is spreading west and south from its point 
of introduction near Boston, Massachusetts, USA 
(Elkinton & Liebhold 1990). In Massachusetts, 
where our test data were collected, larvae hatch 
in early May from eggs laid the previous August. 
Larvae go through five instars in males, and six in 
females. In North America, females are flightless, 
so that the chief mode of dispersal is ballooning in 
first instars (Mason & McManus 1981). For reasons 
that are not yet understood, gypsy moth populations 
sometimes rise to high densities. These outbreak 
populations typically crash as a result of epizootics of 
the NPV. NPVs get their name from the polyhedral 
protein coat that encapsulates the viral capsids, with 
about 20-50 capsids per polyhedral inclusion body 
(Wood & Granados 1991). Inclusion bodies are 
capable of surviving for long periods outside the 
host (Podgwaite et al. 1979), but break down under 
the UV rays in sunlight (Benz 1987). 

Within a season, the initial input of NPV poly- 
hedra into a population is due to eggs that are laid 
on contaminated substrates (typically bark: Murray 
& Elkinton 1989, 1990). Larvae that hatch out of 
these eggs become infected, and die of the virus in 
the late first or early second instar, about 2 weeks 
after hatch (Woods & Elkinton 1987). The poly- 
hedra produced by these infected larvae then lead 
to subsequent rounds of transmission among fourth 
and later instar larvae, which can result in very 
high levels of mortality due to the virus (Woods & 
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Elkinton 1987). An initially low level of NPV in- 
fection among early instar larvae can thus lead to 
high levels of infection in fourth and later instars, 
which is typically when most larvae become infected 
(Elkinton et al. 1990). 

The model 

Since epizootics essentially occur within a single 
gypsy moth cohort (Woods & Elkinton 1987), and 
since gypsy moth is univoltine, the model that we 
use describes the within-season dynamics of the 
NPV, without including host reproduction. 

dS d =-vPS eqn4 
dt 
dI - = vPS-vP(t- T)S(t-T) eqn 5 

dP - = AvP(t- T)S(t- T)- [W eqn 6 
dt 

where S is the density of susceptible hosts, I is the 
density of infected hosts, P is the density of the 
pathogen in the environment, v is the transmission 
constant, T is the time between infection and death 
of the host, A is the number of pathogen particles 
produced by an infected larva, ,u is the decay rate of 
the pathogen, and t is time. This model captures the 
bare essentials of the interaction between insects 
and their pathogens: an important characteristic of 
many insect pathogens is that the infectious stage of 
the pathogen is capable of surviving for long periods 
outside of the host (Evans & Entwistle 1987). In the 
present paper, we test the model only with data 
from an NPV, although the same model could be 
used for other pathogens with infectious stages 
that can survive outside of the host, such as fungi 
(Carruthers & Soper 1987). For NPVs, larvae be- 
come infected (at the rate vPS) by consuming in- 
clusion bodies on contaminated foliage (adults 
cannot become infected; Evans & Entwistle 1987). 
Approximately 2 weeks (T) later, the infected larvae 
die (vP(t - T)S(t - T)), releasing infectious particles 
into the environment (AvP(t - T)S(t - T)) to decay 
(1P) or infect more hosts (vPS). 

Our model differs in three respects from the orig- 
inal version (Anderson & May 1981; for other vari- 
ants, see Brown 1984; Hochberg 1989; Dwyer 1991b; 
Hochberg & Waage 1991). First of all, Anderson 
& May (1981) assume that the mortality rate of 
infected hosts is constant, so that the distribution of 
incubation times is exponential. Observations on 
individual larvae have demonstrated that there is a 
substantial time lag between infection and death 
(Evans & Entwistle 1987), and observations on 
epizootics have suggested that this time lag can 
be important for disease dynamics within a season 
(Dwyer 1991a; Woods & Elkinton 1987). Accord- 
ingly, we assume instead that there is an incubation 
time between infection ar d death. Because actual 

incubation times of nuclear polyhedrosis viruses 
typically have a low variance (Dwyer 1991a) we 
assume that the incubation time is constant. Although 
similar time delays are observed in other diseases, 
including human diseases (Anderson 1979), they are 
often ignored (but see for example Andreasen 1989; 
Aron & May 1982). 

Although the disease-induced mortality rate in 
the original model (equations 1-3) can be estimated 
easily as the inverse of the mean incubation time, 
our use of the incubation time has the additional 
advantage that its interpretation is slightly more 
obvious. It also allows us to use directly the number 
of pathogen particles produced by an individual 
host, A. This parameter is similarly easier to inter- 
pret, even though as Anderson & May (1981) point 
out, their pathogen production rate k = Act, which 
thus also can be estimated easily, given a value of (X. 

A second way in which our model differs from 
Anderson & May's (1981) model is that we are 
testing our model with data from a single season in 
a univoltine host insect, whereas they focused on 
the long-term dynamics of host and pathogen. We 
therefore neglect host reproduction, although the 
model could easily be extended to include multiple 
cohorts (for an example of how to construct a disease 
model for a host with non-overlapping generations, 
see May 1985). Finally, we leave out any loss of 
pathogen particles due to consumption by the host; 
our justification is that within a season this loss is 
slight compared to pathogen production and decay, 
and that compared with what else we are leaving 
out, this considerable mathematical complication is 
a minor consideration. 

Predicting NPV mortality in gypsy moth 

To compare model predictions to field data, we 
must first have independent estimates of the model 
parameters: A, T, ,u and v (Table 1). Three of the 
parameters can be obtained directly from the litera- 
ture. The number of virus particles produced by an 
individual larva (A) can be estimated directly from 
infected larvae in the laboratory (Shapiro, Robertson 
& Bell 1986); since in the field the the majority of 
larvae are infected from polyhedra produced from 
infected fourth instars (Elkinton et al. 1990), we use 
the value for this instar: about 2 x 109 (Shapiro et al. 
1986). The incubation time of infected larvae (T) in 
the field is about 2 weeks (Woods & Elkinton 1987). 

The remaining two parameters, the disease decay 
rate R and the transmission constant v, must be 
estimated at the population level. First, Podgwaite 
et al. (1979) quantified populations of gypsy moth 
NPV particles in the field at two different times after 
an epizootic, just after the epizootic and a year later, 
both in litter and soil. These data can be used to give 
an estimate of the decay rate of the pathogen in the 
following way. In the absence of new infections, 
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the model assumes that, in the absence of virus- 
caused deaths, the pathogen population will decay 
exponentially (dp= -uP), so that 

P(t) = P(0)e->t eqn 7 

where P(O) is the initial pathogen population and 
P(t) is the population at time t. This equation can be 
solved for ,u to give 

t [P(0)] q 

We used an average of the R values for the soil and 
the litter, to give t 3x 10-3 day-1. We recognize 
that applying values for the soil and litter to what 
happens on the foliage may result in an unrealistically 
low value of the pathogen decay rate R, but we 
have reason to believe that this value is at least 
approximately correct (see Results). 

Our approach to estimating the transmission con- 
stant v is a modification of a protocol developed 
by Dwyer (1991a,b). That is, we fit the model to 
short-term, small-scale data on a single round of 
NPV transmission in experimental gypsy moth 
populations in the field. Over a short enough time 
interval, a week or less, the decay of the pathogen 
is probably negligible (<2% loss for R = 3 x 10-3 

day-'), and t< T, so that ddp-0 and the pathogen 
population density P is a constant P(O). The model 
thus becomes 

dS 
-d= -vP(O)S eqn 9 
dt 
dI 
- = vP(O)S eqn 10 
dt 

This simpler model can be solved to provide an 
expression for v in terms of the initial density of 
polyhedral inclusion bodies P(0), the number of 
larvae infected by the end of the experiment I(7), 
and the initial density of healthy larvae S(0): 

v= lnI1 - I(7) eqn 11 
7P(O) S(0) 

To fit equation 11 to data, we performed a field 
experiment in which we placed healthy and infected 
larvae onto branches of red oak trees (Quercus 
rubra (L.)) (in the Cadwell State Forest, Pelham, 
Massachusetts) and enclosed them in mesh bags for 
1 week. To ensure that the healthy larvae were 
uninfected, they were reared in the laboratory on 
artificial diet until the start of the experiment. We 
infected the initially infected larvae by feeding them 
a solution of NPV inclusion bodies of sufficient 
concentration to ensure 100% mortality due to the 
virus. Each bag contained about 40 oak leaves; 
calculating leaf area with a computerized digitizer 
showed that this was equivalent to a leaf area of 
0O 05 in2. Since transmission has been suggested 

to vary in a complex way with pathogen density 

(Valentine & Podgwaite 1982), we used two treatment 
densities of infected larvae (high = 20, low = 5). 
Each treatment was replicated four times, with one 
replicate corresponding to an individual red oak 
tree, for a total of eight experimental bags. The 
infected larvae were first instars, while the healthy 
larvae were a mixture of third and fourth instars. 
Each bag contained 25 initially healthy larvae. This 
corresponds to a density of 500 larvae m2, which is 
within the range of observed outbreak densities 
(Campbell 1981). In addition to the eight exper- 
imental bags, there was a control bag that contained 
no infected larvae. No infections appeared in the 
control bag. 

After 1 week, we removed all the initially healthy 
larvae to individual rearing cups in the laboratory 
to see how many had become infected as a result 
of contact with the virus particles released by the 
initially infected larvae. The results of the exper- 
iment are shown in Fig. 1. Transmission was higher 
at a higher density of infected larvae, resulting 
in average estimates of v for the two treatments 
(see below) that were quite similar, suggesting that 
transmission does increase linearly with the density 
of the pathogen (Dwyer 1991). 

Since we know the number of pathogen particles 
per larva, and since the initially infected larvae died 
shortly after the beginning of the experiment, we 
can convert the density of infected larvae that began 
the experiment into the initial density of pathogen 
particles, P(0). Since we also know the initial den- 
sity of healthy hosts S(0) and the final density of 
infected larvae I(7), we can calculate v from equ- 
ation 11. All the infected larvae were first instars, 
so the value that we use for the number of inclu- 
sion bodies per larva is that specific to first instars: 
A = 4 x 108 (Shapiro et al. 1986). We first calculated 
the transmission constant v based on pooling the 
replicates for each treatment (high: 1-13 x 10- 12m2 

day-1, low: 1-77 x 10-12m2 day'-), and then used the 
mean of the resulting two values (1-45 x 10- 12m2 

1.0 

0O-5 - 05 

LL I 

0*01 
Low High 

Density of initially infected larvae 

Fig. 1. Results of the experiment used to estimate the 
transmission constant v. Fraction infected indicates the 
fraction of initially healthy larvae that became infected. 
Error bars indicate 1 SE. 
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day-1). The values of all the parameters are given 
in Table 1. 

Characteristics of the field plots 

Given estimates of each of the parameters, we can 
use the model to predict the dynamics of NPV 
epizootics in gypsy moth populations. We com- 
pared the model predictions to time series of NPV 
mortality in gypsy moth larvae collected by Woods 
& Elkinton (1987) in five plots in 1983, 1984 and 
1985, for a total of 8 plot-years. The plots were 
located in the vicinity of Otis Air National Guard 
base in Cataumet, Massachusetts, and were com- 
posed mostly of black oak (Quercus velutina Lam.), 
white oak (Quercus alba L.) and pitch pine (Pinus 
rigida Mill.). The plots ranged in size from 4 to 9 ha, 
and were a minimum of 100 m apart. 120 larvae were 
collected per week from plots 3, 5 and 8 in 1983, 
while 450 larvae per week were collected from all of 
the other plots in all years. 

To use the model to make predictions, we need 
estimates of the initial densities of infected and 
healthy larvae for each plot in each year. To measure 
initial densities in each population, Woods et al. 
(1991) quantified the density of egg masses at the 
beginning of the season for each plot, and estimated 
the average number of larvae per egg mass by 
hatching out egg masses in the laboratory. (For 
plots 5/1985 and 8/1983, average hatch was not 
quantified, so we used the average for all of the 
plots. Also, we did not use Woods & Elkinton's 
(1987) data for plot 5/1984 because neither average 
hatch nor initial fraction infected were quantified 
for this plot.) Since virus epizootics in gypsy moth 
are initiated by larvae that become infected while 
hatching from environmentally contaminated eggs 
(Murray & Elkinton 1989, 1990), Woods et al. (1991) 
were able to estimate the fraction of larvae that 
hatched out infected in each plot, and thus the initial 
density of virus polyhedra, by rearing out egg masses. 

Woods et al.'s data give the density of larvae 
in terms of ground area (m2), whereas our trans- 
mission data make the units of the model foliage 
area (mi2). To convert from ground area to foliage 
area we used Liebhold et al.'s (1989) estimate of the 
leaf area index for three of the plots: the leaf area 
index gives the foliage area per unit ground area 
(median of 1*4 m2 of foliage per m2 of ground). 

Larvae in the field typically hatch out over about 

a 7-day period. Since we do not know what the 
distribution of hatch times was for any of the plots, 
for simplicity we assume that larvae hatch at time 
t= 0, where the first sampling point is at t = 7 days. 
Variations on this assumption to spread out hatch 
have only a slight effect on the model predictions, at 
least for the parameter values in Table 1. To compare 
the model to the time series of NPV mortality, we 
numerically solved the model on a computer (using 
the method of steps: Hairer, N0rsett & Wanner 
1987, pp. 288-289). In some plots, there is epizootic 
data for more than one season; in the interests of 
simplicity we treat each plot in each year as an 
independent unit. 

Results 

The quality of the fit of the model to the data varies 
considerably between plots (Fig. 2). For two of the 
plots (1/1983, 10/1984) the fit is excellent, for three 
it roughly reproduces the data (5/1985, 8/1983, 
16/1985), and for the remaining three it is very poor. 
In all cases, the model qualitatively reproduces the 
bimodal temporal pattern of disease incidence: an 
initial peak due to the death of larvae that hatched 
out infected, and a second peak representing 
repeated rounds of transmission. Of course, since 
the model assumes that the incubation time of in- 
fected larvae is constant, the first peak predicted by 
the model is simply the initial fraction infected. 

It is important to remember that all of the model 
parameters were estimated independently of the 
data to which we compare the model. A useful way 
of assessing the model fit for the independently 
estimated parameters is therefore to compare it 
to the model fit for best-fit parameters. We con- 
centrated on fitting the transmission constant v 
because this is the parameter that we are least 
confident of, for three reasons: (i) it is estimated 
at the population level; (ii) there may well be exper- 
imental artefacts associated with confining larvae to 
mesh bags; and (iii) there are many different factors 
that can affect transmission (Dwyer 1991a). In 
Fig. 3, for each plot we have calculated the sum of 
the squared errors (SSE) between the model pre- 
diction and the data as a function of the transmission 
constant v. We have also calculated values of v for 
each of the bags in our transmission experiment. 
In Fig. 3, we have located on the SSE curve the 
SSEs for each of these eight estimates ([), as well 

Table 1. Values of parameters from equations 4-6, which' were used to produce the simulation output in Fig. 2 

Symbol Parameter Value 

A Number of virus particles per infected cadaver 2 x 109 
*v Disease incubation time 14 days 
It Disease decay rate 0-003 day-' 
v Transmission rate 1.45 x 10-12 m2 day-' 
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20- 40- Plot 16, 1985 
Plot 5, 1985 8-6 larvae m-2 
32 larvae m-2 29% infection 
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10 20 - 

o 0 E 

0 2 4 6 0 2 4 6 

Time (weeks) 

Fig. 2. Comparison of model prediction with time-series of virus mortality in gypsy moth populations: 0, observed weekly 
percentage mortality; , model prediction for parameter values given in Table 1. M indicates missing data. 

as the value that we used in the simulations in Fig. 2 
(U), in order to show how the error in our estimates 
of v compares to the sensitivity of the model fit to v. 
This figure confirms the rough impression of the fit 
of the model; e.g. for plot 1/1983 and plot 10/1984, 
the bulk of the estimates of v from our experimental 
data are quite close to the best fitting v (the minimum 
SSE). Figure 3 also indicates that the model fit is 
better than it looks for other plots; specifically, 
although visually the model fit for plot 5/1985 and 
plot 16/1985 in Fig. 2 is not very good, Fig. 3 shows 
that, compared to the error in our estimate of v, the 
model prediction is not far from the minimum SSE. 
This suggests that the mediocre fit for these two 
plots could be due in part to small errors in the 
estimates of either v or the mortality data. For plot 
8/1983, however, small changes in v would have 
little or no effect on the model fit; in fact, visual 

inspection of the data suggests that NPV mortality 
was so low that the time-series of disease incidence 
was virtually random. Finally, for plot 3/1983, and 
plot 1/1985, not even the extreme values of v are 
close to the best-fitting value, while for plot 5/1983 
only the largest estimated value of v comes any- 
where near the best-fitting value. Since these three 
plots had the lowest initial densities, this indicates 
that the model has failed to take into account bio- 
logical details that become important at low density. 
In summary, since small changes in v can have a 
large effect on the fit of the model, it is important to 
investigate whether the poor fit of the model is a 
failure in construction of the model or in estimation 
of the parameters. 

To illustrate more clearly how changes in the 
transmission constant v affect the model fit, in Fig. 4 
we have compared the model prediction to the data 
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Fig. 3. Comparison of the fit of the model to the data for different values of the transmission constant v: ~, sum of the 

squared errors (SSE) between the model and the data; 11, SSE for values of v estimated from each replicate of the 

experimental data in Fig. l; *, SSE for the estimate of v that we used in the model predictions in Fig. 2. Since in any given 

graph both the squares and the line plot the same variable, the squares only show the location of the SSE for our estimates 

of v. In other words, all the squares must be on the line. 

for the best-fit value of v for each plot. The fit for the 
three poorly fitting plots (3/1983, 5/1983, 1/1985) 
improves dramatically as v is increased; significantly, 
the best values for these three plots are very similar. 
The improvement in the fit is noticeable but slight 
for plots 5/1985 and 16/1985, and negligible for 
the remaining plots. 

Although we have concentrated on the trans- 
mission constant v, our estimate of the disease 
decay rate [ is another likely source of inaccuracy. 
The estimate that we use is based on inclusion body 
survival in soil and in litter, whereas within a season 
inclusion bodies must survive on foliage to be trans- 
mitted. Indeed, when gypsy moth NPV is used as an 
insecticide it breaks down rapidly on foliage; such 

insecticidal preparations, however, may reduce the 
survival ability of inclusion bodies by removing 
them from the host cadaver (Podgwaite et al. 1979). 
In fact, an estimate of the decay rate F on foliage for 
the closely related Douglas-fir tussock moth Orgyia 
pseudotsugata is very close to our estimate for gypsy 
moth (Dwyer 1992). We therefore think that our 
estimate is not too inaccurate. A final consideration 
is that, if R is actually much higher than we think, 
then our estimate of v is similarly far too low. This is 
because to estimate v we assumed that ,i = 0 in 
the mesh bags. If F is actually higher, then the 
transmission parameter v must be higher as well 
to account for the level of infection in our trans- 
mission experiments. 
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Fig. 4. Comparison of model prediction with time-series of virus mortality for the same plots as in Fig. 2, except that here 
we use the best-fit value of the transmission constant v for each plot. The value of v that we used for each plot is indicated 
on the appropriate graph. M indicates missing data. 

Discussion 

Considering how simple the model is, and that all of 
the model parameters were estimated independently 
of the test data, the model equations 4-6 do an 
excellent job of predicting the NPV mortality in five 
of the eight plots. Since all of the model parameters 
were estimated at a small scale, it is apparently often 
possible to deduce the large-scale phenomenon of 
NPV epizootics from small-scale measurements of 
transmission. In other words, transmission at a small 
scale may be what drives epizootics of NPV in gypsy 
moth populations. Moreover, for the three cases 
for which the model does poorly, a clear pattern 
emerges: transmission was higher than expected at 
low density. Clearly, our experimental protocol 

did not lead to inflated values of the transmission 
constant v. 

Our protocol for estimating v is significant in 
itself, since in previous tests of the model this para- 
meter has simply been fitted to the data (Anderson 
& May 1980, 1981). An independent estimate of v 
has the additional advantage that it suggests that a 
different process takes place in gypsy moth NPV 
epizootics at low density than at high density; speci- 
fically, a process that leads to higher transmission at 
low densities. In contrast, using a single value of v 
that minimized the SSE for all the plots combined 
would lead to a poor fit in every case, and thus to 
complete rejection of the model. 

Although there are a variety of possible reasons 
why the model did poorly at low densities, some 
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possibilities can be eliminated. For example, the 
model failure is unlikely to be due to a lack of con- 
sideration of defoliation-induced changes in allelo- 
pathic chemical constituents of host-tree foliage. 
At low density one would expect low defoliation 
and thus low levels of induced foliage chemicals. 
Since transmission is lower with reduced levels of 
such chemicals (Keating & Yendol 1987), and the 
model does poorly because of an underestimate of 
transmission, this factor is probably not responsible. 
Similarly, differences in host-tree species between 
plots were probably unimportant, as the fit of the 
model for plots 1 and 5 goes from good to bad 
between different years. Furthermore, the plots 
differed little in tree species composition. It also 
seems unlikely that the poor fit at low density is 
because we ignored stage structure, since changes in 
transmission with stage would presumably be the 
same in all populations. Weather is also not likely to 
be the cause, because the model did well for some 
plots and badly for other plots in the same year, and 
as the plots were all in the same area of the state, it 
is unlikely that weather conditions varied much 
between plots. Moreover, Woods & Elkinton (1987) 
showed that there was no correlation between NPV 
mortality and a variety of weather variables. A pos- 
sibility that cannot be assessed is that either the host 
or the pathogen differed genetically among plots 
or years. This would require, for example, that 
pathogen infectiousness increased with time in 
plot 1, or that host resistance increased with time in 
plot 5. Although it may be possible for such changes 
to occur after two generations (Myers 1988), there 
is no evidence for it. 

A somewhat more likely possibility is that our as- 
sumption that each plot constitutes an isolated popu- 
lation is incorrect. The three plots in question all had 
low density, so there was probably net immigration 
into these plots. Moreover, high and low density 
populations coexisted side-by-side throughout the 
region during the period 1983-85 (J.S. Elkinton, 
unpublished observation). It is thus possible that 
enough larvae ballooned into these three plots to 
lead to a more severe epizootic than was predicted 
by the model. Another possible explanation for the 
model failure in three of the plots has to do with 
larval behaviour. Specifically, larvae may behave 
differently at low density, so that as density declines 
new infections are no longer a linear function of host 
density. It is known, for example, that at low density 
a higher proportion of larvae visit daytime resting 
sites in the litter (Lance, Elkinton & Schwalbe 
1987). This behavioural change should lead to in- 
creased larval contact rates both with other larvae 
and with inclusion bodies that survived earlier 
epizootics, either of which may in turn increase 
transmission enough to explain the discrepancy 
between the model and the data. In any case, the 
model failure at low host densities indicates that fur- 

ther research should be directed towards an under- 
standing of disease dynamics at low host density, 
with a particular eye to changes in transmission 
with density. 

By building and testing the model we have thus 
accomplished three tasks. First, we have partially 
confirmed Woods & Elkinton's (1987) hypothesis 
that the timing and severity of NPV epizootics in 
gypsy moth are determined by densities of initial 
healthy and infected hosts, horizontal transmission, 
and the delay between infection and death. In other 
words, many of the biological details that we left 
out of the model may not be necessary for predicting 
NPV population dynamics. Second, we have gener- 
ated a new hypothesis, or more accurately a modi- 
fication of Woods & Elkinton's (1987) hypothesis; 
i.e. that an as yet unidentified aspect of the biology 
of gypsy moth and its NPV leads to increased NPV 
transmission at low densities. In other words, some 
detail that we ignored in the model becomes import- 
ant at low densities. Although we have ruled out 
some of the possible influences on host and pathogen 
interactions as being unimportant at the population 
level, this is not to say that such effects are not real, 
or that they would not be more apparent at the 
population level with better data. Nevertheless, 
Woods & Elkinton's (1987) data represent perhaps 
the most detailed and thoroughly replicated data set 
for any animal disease. For all practical purposes, 
then, our model may be nearly sufficient. 

Finally, we have presented a protocol for esti- 
mating the transmission parameter v. This protocol 
has the advantage that, at least for plots 1/1983 and 
10/1984, it apparently gave the correct value of v. 
This is distinct from plots 3/1983, 5/1983 and 1/4985, 
for which a different value of v gives an excellent fit 
of the model to the data (Fig. 4), i.e. although there 
is certainly something that we did not take into 
account for those plots, increasing v would alone 
virtually eliminate the problem. 

Our protocol nevertheless does not solve the pro- 
blem of interpreting v in terms of more fundamental 
biological parameters, such as food consumption 
rate, etc. It is important to remember, however, that 
v can be interpreted as the fraction of encounters 
between hosts and pathogens that result in infection 
(Anderson 1979); it is a mistake to think that the 
transmission term vPS is somehow not mechanistic. 
Moreover, as Anderson (1979) points out, minor 
modification of this term allows the incorporation of 
additional biological detail (see also Liu, Levin & 
Iwasa 1987); unfortunately, we have not been able 
to find an existing formulation in which transmission 
increases with decreasing host density in a bio- 
logically meaningful way. 

In short, our results suggest that there is a need 
for further development of insect host-pathogen 
models to include details of host behaviour that 
affect transmission. Such a development, of course, 
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must be tempered by a realization that problems of 
parameter estimation can render detailed models 
extremely unwieldy. Indeed, even including only 
those factors that are believed to affect susceptibility 
could make parameter estimation nearly impossible. 
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