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abstract: Models of outbreaks in forest-defoliating insects are typ-
ically built from a priori considerations and tested only with long
time series of abundances. We instead present a model built from
experimental data on the gypsy moth and its nuclear polyhedrosis
virus, which has been extensively tested with epidemic data. These
data have identified key details of the gypsy moth–virus interaction
that are missing from earlier models, including seasonality in host
reproduction, delays between host infection and death, and hetero-
geneity among hosts in their susceptibility to the virus. Allowing for
these details produces models in which annual epidemics are followed
by bouts of reproduction among surviving hosts and leads to quite
different conclusions than earlier models. First, these models suggest
that pathogen-driven outbreaks in forest defoliators occur partly be-
cause newly hatched insect larvae have higher average susceptibility
than do older larvae. Second, the models show that a combination
of seasonality and delays between infection and death can lead to
unstable cycles in the absence of a stabilizing mechanism; these cycles,
however, are stabilized by the levels of heterogeneity in susceptibility
that we have observed in our experimental data. Moreover, our ex-
perimental estimates of virus transmission rates and levels of het-
erogeneity in susceptibility in gypsy moth populations give model
dynamics that closely approximate the dynamics of real gypsy moth
populations. Although we built our models from data for gypsy moth,
our models are, nevertheless, quite general. Our conclusions are
therefore likely to be true, not just for other defoliator-pathogen
interactions, but for many host-pathogen interactions in which sea-
sonality plays an important role. Our models thus give qualitative
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insight into the dynamics of host-pathogen interactions, while pro-
viding a quantitative interpretation of our gypsy moth–virus data.

Keywords: host-pathogen interactions, mathematical models, Lyman-
tria dispar, nuclear polyhedrosis virus, heterogeneity in susceptibility.

A classic ecological argument is that the occurrence of
cycles in predator-prey models suggests that fluctuations
in animal populations may be driven by biotic interactions
rather than by weather (Elton 1927). More recent versions
of this argument use more sophisticated statistical methods
(Turchin 1990; Turchin and Taylor 1992; Ellner and Tur-
chin 1995) and so make the argument in favor of biotic
interactions with greater force. We are likewise interested
in fluctuations in animal populations, specifically in out-
breaks of forest insects, but we assume that outbreaks in
at least some insects are driven by biotic interactions. We
focus instead on mechanism. We ask, How likely is it that
pathogens are the mechanism driving insect outbreaks?
This idea originated in modeling papers by Anderson and
May (1980, 1981), but Anderson and May’s models have
been criticized on the grounds that they make unrealistic
assumptions. Modifications to their models, however, have
not been particularly enlightening because some modifi-
cations make it more likely that the models will show the
long-period cycles typical of defoliating insects, while other
modifications make such cycles less likely (see Briggs et
al. 1995 for a review).

We argue that part of the difficulty in determining the
importance of pathogens in insect outbreaks is that pre-
vious models have been constructed from a priori con-
siderations and have been tested only by comparison with
time series data on insect abundances. Here, we present
an alternative approach that is focused on a particular
insect-pathogen interaction, between the gypsy moth Ly-
mantria dispar and its nuclear polyhedrosis virus, and that
is based on experimental data. In previous work, we used
field experiments to show that the transmission of the
gypsy moth virus is determined largely by host and path-
ogen density and by host heterogeneity in susceptibility
(Dwyer and Elkinton 1993; D’Amico and Elkinton 1995;
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D’Amico et al. 1996, 1998; Dwyer et al. 1997). We further
showed that an epidemic model that includes these factors
can predict the timing and intensity of single-season ep-
idemics in real gypsy moth populations (Dwyer et al. 1997,
2000) in the gypsy moth, and in many other temperate-
zone defoliators, there can be only one virus epidemic and
one host generation per year). Other experiments have
shown that the overwinter survival of the virus on egg
masses largely determines the density of virus at the be-
ginning of the epidemic (Murray and Elkinton 1989,
1990). Here, we consider what these experimental data
imply for gypsy moth population dynamics by combining
our epidemic model with a model for overwinter virus
survival. The resulting model differs from the Anderson
and May model and most of its successors (but see Briggs
and Godfray 1996) by allowing for heterogeneity in sus-
ceptibility among hosts, by including the details of virus
survival, and by allowing for delays between infection and
death.

Although we focus on the gypsy moth and its virus, the
similarity between the gypsy moth virus and pathogens of
other defoliators suggests that our model will be applicable
to many other pathogens of forest defoliators (Cory et al.
1997). We therefore ask two related questions. First, we
ask, How does host heterogeneity in transmission and de-
velopmental delays affect the likelihood of long-period,
large-amplitude fluctuations in host-pathogen interac-
tions? Second, we focus more specifically on the gypsy
moth, and we ask, How does heterogeneity in host sus-
ceptibility affect gypsy moth population dynamics? In par-
ticular, our gypsy moth data show moderately high levels
of heterogeneity in host susceptibility. Such heterogeneity
generally has a strongly stabilizing effect on interspecific
interactions (Hassell et al. 1991), yet gypsy moths in North
America, where the virus is of great importance (Elkinton
and Liebhold 1990), are known to have unstable popu-
lation dynamics (Williams and Leibhold 1995). We there-
fore ask, Are the levels of heterogeneity in susceptibility
estimated from our data consistent with the outbreaking
dynamics of the gypsy moth in North America?

Modeling Single Epidemics

For host-pathogen interactions with only one epidemic
per year, we can model the epidemic and interepidemic
periods separately. First, we describe our epidemic model.
This model was built from experiments on the transmis-
sion of the gypsy moth virus, but the underlying biology
is common to the pathogens of many defoliators (Evans
and Entwistle 1987; Cory et al. 1997). These viruses are
transmitted horizontally when host insects, while feeding,

accidentally consume contaminated foliage. Larvae that
consume a high enough dose (only larvae can become
infected; Volkmann 1997) die in about 2 wk, and their
cadavers further contaminate the foliage. If the virus par-
ticles in these cadavers are not killed by the ultraviolet
rays in sunlight or otherwise removed from the foliage,
the virus is available to be consumed by other insects,
leading to new rounds of transmission. We have shown
experimentally that per capita transmission is unaffected
by prior defoliation (D’Amico et al. 1998) and is only
slightly influenced by moisture (D’Amico and Elkinton
1995). Our experiments have shown, however, that per
capita transmission is strongly affected by virus density
and by heterogeneity among individuals in the dose re-
quired to cause infection (Dwyer and Elkinton 1993;
Dwyer et al. 1997). A model that allows for these effects
is

­S
= 2nPS, (1)

­t
`

dP
= P(t 2 t) nS(n, t 2 t)dn 2 mP, (2)Edt 0

where S is the density of uninfected insects, P is the density
of infectious cadavers, n determines the rate of horizontal
transmission of the disease, t is the time between infection
and death, or the pathogen generation time, and m is the
breakdown rate of the cadavers on the foliage. Note that
we do not need to include an equation for infected hosts
I because all infected hosts are ultimately converted to
cadavers so that new cadavers at time t can be calculated
from the number of hosts infected t time units earlier. We
are thus assuming that there is a constant time lag t be-
tween infection and death, which is important because the
time that it takes an infected insect to die is a significant
fraction of the length of an epidemic. The resulting model
is very similar to models originally constructed to describe
the dynamics of human diseases (Kermack and Mc-
Kendrick 1927). An important difference from classical
disease models, however, is that equations (1) and (2)
allow for variability among individuals in susceptibility
and so resemble AIDS models that allow for variability in
levels of sexual activity (Anderson et al. 1986). This var-
iability in host susceptibility is reflected in a distribution
of transmission parameters n so that gives theS(n, t)dn

number of larvae at time t that have susceptibilities be-
tween n and for small . In particular, we assumen 1 dn dn

that , where is the density of hosts atˆ ˆS(n, 0) = S(0)f(n) S(0)
the beginning of the epidemic ( ) and`Ŝ(0) { S(n, 0)dn∫0

f(n) is the initial distribution of transmission rates. In
much of what follows, we assume that f (n) is a gamma
distribution, which is mathematically convenient and
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which matches our data (Dwyer et al. 1997). Our results,
however, can also be derived without this assumption, by
using an approximation method (app. A).

One of the advantages of our model structure is that it
allows us to understand the long-term dynamics of host-
pathogen interactions in terms of single epidemics. To
make this connection, we first show how single epidemics,
as described by equations (1) and (2), are affected by host
and pathogen density, host heterogeneity in susceptibility,
and epidemic length. A convenient way to see these effects
is to allow time to go to infinity in equations (1) and (2).
We call this approximation the “infinite epidemic” or
“burnout” approximation, and it corresponds to allowing
the epidemic to burn itself out rather than be truncated
by host pupation, as sometimes occurs in gypsy moth
populations. When initial host and pathogen densities are
large or when the length of the season is long compared
to the pathogen generation time, the approximation is
quite accurate. It provides an implicit expression for the
fraction of hosts infected, according to

221/C
2n̄C ˆ1 2 I = 1 1 UIS(0) 1 P(0)I . (3){ }m

Here, I is the fraction of the host population that becomes
infected in the epidemic, is again the total initial hostŜ(0)
density, P(0) is the initial pathogen density, and and Cn̄

are the mean and coefficient of variation of the distribution
of host susceptibility (app. A). To interpret equation (3),
we express both pathogen and host density in terms of
the threshold density , which is the host density¯N = m/nT

necessary for an epidemic to occur as the initial pathogen
density P(0) approaches 0. The fraction infected I thus
depends only on the heterogeneity C and the rescaled den-
sities and . For this scaling, figure 1 showsŜ(0)/N P(0)/NT T

that higher densities of hosts or pathogens lead to more
intense epidemics, as we would expect. Note that increases
in the transmission rate or decreases in the breakdown
rate have the same effect on the fraction infected I as do
proportional increases in the initial densities of hosts and
pathogens. Figure 1 additionally shows that increasing het-
erogeneity in susceptibility leads to smaller epidemics, even
with mean susceptibility held constant, implying that the
addition of more resistant individuals has a greater effect
on epidemic intensity than does the addition of more sus-
ceptible individuals. Changes in heterogeneity, however,
do not affect the threshold density.

Because only larvae can become infected, and because
the time between infection and death t is often a significant
fraction of the larval period, epidemics in real insect pop-
ulations may often be curtailed by host pupation. Figure
1 compares the fraction infected for a model that allows

for epidemics that are shortened by pupation, calculated
from equations (1) and (2), to the fraction infected as
calculated by the infinite-epidemic approximation (3).
Surprisingly, the approximation works well even if the
epidemic lasts for only five times the pathogen-generation
time t. In gypsy moth, the larval season lasts about 10 wk,
and the pathogen generation time t is about 10–14 d
(Woods and Elkinton 1987), for an epidemic length of
5–7t. The burnout approximation may therefore work well
in many cases. Also, early burnout is more likely when
host and pathogen densities are high, so equation (3) be-
comes a better approximation as densities increase.

Modeling Long-Term Dynamics

Here, we link together single epidemics, as modeled by
either equation (3) or equations (1) and (2), by modeling
the reproduction of the surviving hosts and the over-win-
ter survival of the pathogen. In the interests of clarity, we
follow previous modeling efforts in assuming that host
reproduction is density independent so that the pathogen
is the only source of density dependence. Although the
fecundity of gypsy moths and other defoliators can be
reduced as a result of competition for food at high densities
(Campbell 1978; Carter et al. 1991; Myers and Kuken
1995), and survival at low densities may be density de-
pendent (Elkinton et al. 1996), we are partly exploring
whether we need to invoke such density dependence to
explain the dynamics of these insects, so for now it makes
sense to neglect these details. We therefore assume that
each host that survives the epidemic produces some con-
stant number of eggs that hatch to start the next year’s
epidemic.

Like our epidemic model, our model for pathogen sur-
vival is based on experimental evidence. Specifically, Mur-
ray and Elkinton (1989, 1990) showed experimentally that
virus produced during an epidemic contaminates the eggs
that are laid afterward. This is significant because virus
mortality among hatching larvae is apparently mostly due
to infection during emergence from the egg mass (Woods
et al. 1991), and these infected hatchlings in turn can
initiate another epidemic. The virus can also survive in
leaf litter, in pupal mats, and in cracks in bark (Podgwaite
et al. 1979), and newly hatched larvae can become infected
by walking on these contaminated substrates and trans-
ferring the virus to their food plant (Weseloh and An-
dreadis 1986; Woods et al. 1989). Unlike some fungal path-
ogens of insects, nuclear polyhedrosis viruses are unable
to penetrate the integument of their hosts (see Volkmann
1997). After larvae reach the foliage, however, they gen-
erally stay there, except for fifth and sixth instars and some
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Figure 1: Effects of epidemic length T, number of pathogen generations per epidemic, and coefficient of variation in host heterogeneity in susceptibility
C on epidemic intensity, fraction infected I. The intensity of infinite epidemics is calculated from the infinite-epidemic equation (3), while the
intensity of short epidemics is calculated from the model equations (1)–(2). Note first that the minimum host density at which an epidemic occurs
is unaffected by host heterogeneity in susceptibility. Second, the infinite epidemic equation (3) provides a good approximation to equations (1)–(2)
for epidemic lengths .T ≥ 5

fourths in low-density populations (Lance et al. 1987;
gypsy moths have five larval instars in males and six in
females). It therefore appears that infection of larvae as
they emerge from the egg is the major process by which
the gypsy moth virus overwinters, so in our models, we
assume that some fraction f of the virus produced during
the epidemic survives to infect emerging larvae in the fol-
lowing season. A more complex model in which overwin-
tering pathogens can also infect larvae later in the season
gave very similar results.

Our model of the infection of hatching larvae is based
on our model for the epidemic in later instar larvae, but
we allow for a difference in a key parameter. Specifically,
for many insects, disease susceptibility is much higher in
earlier instars (Watanabe 1987), and for gypsy moth in
particular, newly hatched larvae are at least 100 times as
susceptible as newly eclosed fourth instars (G. Dwyer, un-

published data). In fact, average susceptibility decreases
with each additional larval stage, not just from the first to
the second as we have assumed here. The effects of later
increases, however, are largely offset by increases in the
amount of foliage consumed and by other aspects of feed-
ing behavior (Dwyer 1991; G. Dwyer, unpublished data).
Our model for the infection of hatching larvae, which
provides the initial conditions for the epidemic, is then

2nrZtS(0, n) = N f(n)e , (4)t

`

2nrZtP(0) = N f(n)(1 2 e )dn. (5)tE
0

Here, r is the ratio of the effectiveness of infection at the
time of hatch relative to infection later in the season, which
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incorporates effects that result from mode of infection,
increased susceptibility of larvae, and differences in time
of exposure (app. A). Also, to emphasize the differences
between our within-season and between-season models,
we introduce the new variables Nt and Zt, which are the
initial densities of hosts and pathogens at the beginning
of the epidemic in generation t.

This model assumes that latent infection, an over-
wintering mechanism whereby virus is transmitted from
exposed-but-surviving females to their offspring, is largely
unimportant. Although there is some evidence for such
infections in other insects (Fuxa and Richter 1992; Roth-
man and Myers 1994), Murray et al. (1991) showed that
the survival of exposed female gypsy moth larvae is low,
and no viral DNA can be found in any females that do
survive exposure. Moreover, we have established many ex-
perimental gypsy moth populations in the field from eggs
that have been surface disinfected to rid them of the virus,
and such populations have had no virus infections (Gould
et al. 1990; Dwyer and Elkinton 1995; Hunter and Elkinton
1999, 2000). We therefore leave latent infections out of
our models.

Having linked the epidemic and interepidemic periods,
we now have a complete model of long-term insect-path-
ogen dynamics. The pathogen is introduced into the host
population each year by the contamination of egg masses,
a process described by equations (4) and (5). When larvae
hatching from these egg masses die, they produce path-
ogens that initiate an epidemic, a process described by
equations (1) and (2), which ends because of host pu-
pation. Larvae that are uninfected at the time of pupation
survive to reproduce with fecundity l. Before proceeding,
however, we make explicit two additional assumptions.
First, because there is little evidence that any infected gypsy
moths survive (Murray et al. 1991), we assume that hosts
that are infected but not yet dead when the epidemic ends
also eventually die and so are converted to pathogen par-
ticles. Second, for now we assume that the distribution of
host heterogeneity is the same at the beginning of each
epidemic. In fact, we do not know how much of the var-
iation is genetic or how rapidly the distribution may
change under selection, but this assumption is a good
starting point for understanding this complex system. We
are currently collecting data to test this assumption, and
we are developing models that relax it.

In what follows, we refer to the model in which epi-
demics are curtailed by host pupation as the “short-
epidemic model.” Because this model can only be un-
derstood through extensive computer simulations, we
also present a simpler model based on the infinite-epi-
demic equation that can be understood more fully than
the short-epidemic model and can be simulated more

easily. This simpler model can be written as a set of
difference equations:

N = lN (1 2 I), (6)t11 t

Z = f N I 1 gZ , (7)t11 t t

221/C
2n̄C

1 2 I = 1 1 (N I 1 rZ ) . (8)t t[ ]m

Again, Nt and Zt are the densities of hosts and pathogens
in generation t. Equation (8) is essentially the infinite-
epidemic equation (3) with the initial density of pathogens
Zt scaled by r, the ratio of the mean susceptibility of hatch-
ing larvae to that of older larvae. In words, surviving hosts

produce on average l offspring. Dead infectedN (1 2 I)t

hosts Nt I are converted to infectious cadavers, of which a
fraction f survive to infect egg masses in the following
season, with relative susceptibility r. A fraction g of in-
fectious cadavers from previous generations survives from
one season to the next. We thus allow pathogens that
survive from one generation to the next to have a different
survival rate than pathogens produced during the epi-
demic, but in accord with our anecdotal field observations,
in what follows, we often assume that this survival rate g

is 0. This assumption has little effect on our results.

Qualitative Dynamics of the Long-Term Models

Rescaling host and pathogen densities shows that the dy-
namics of both of our models depend only on fecundity
l, heterogeneity in susceptibility C, long-term virus sur-
vival g, and a new parameter f, the expected infectiousness
in the next generation of a particle produced in the current
epidemic (app. A). The mean transmission rate and then̄

pathogen decay rate m affect only mean host and pathogen
densities. High m and low give high average host andn̄

pathogen densities, and vice versa. We define sof { fr
that f is the product of the probability f that a pathogen
particle survives the interepidemic period times the relative
mean susceptibility of newly hatched larvae r. Because
newly hatched larvae have relatively high mean suscepti-
bility, r is likely to be 11, so it is possible that f is 11.
As we will discuss, this possibility is critical for under-
standing the dynamics of forest insects. The resulting res-
caled model is

N = lN (1 2 I), (9)t11 t

Z = fN I 1 gZ , (10)t11 t t

22 21/C1 2 I = [1 1 C (N I 1 Z )] . (11)t t

Like many discrete-generation models, equations (9)–(11)
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Figure 2: Long-term dynamics of the model for realistic parameter values
( , , ). Host outbreaks occur at 9-yr intervals andl = 5.5 C = 0.86 f = 15
are terminated by a succession of pathogen epidemics. This pattern
matches the dynamics of the gypsy moth and its virus.

Figure 3: Ranges of parameter values for which limit-cycle bifurcations
occur for the model with infinite epidemics, equations (9)–(11). Stability
is promoted by high values of multigeneration pathogen carryover g, low
values of fecundity l, high values of host heterogeneity C, and low values
of current-generation pathogen carryover f.

can show chaotic dynamics, but chaos only occurs for
unrealistically high values of fecundity ( ). Forl ≥ 10,000
more realistic values of fecundity, equations (9)–(11) can
show cycles that range in period from two generations to
120 generations. Because of our interest in the dynamics
of forest defoliators, we concentrate on parameter values
that give realistic cycles with a period of five generations
or more (fig. 2). We postpone a discussion of shorter-
period fluctuations for a subsequent article.

An important advantage of the infinite-epidemic ap-
proximation is that we can derive expressions for the
boundaries between stability and cycles for the infinite-
epidemic model. Figure 3 shows these boundaries, and
demonstrates the stabilizing effects of high heterogeneity
C, high multiseason pathogen carryover g, low fecundity
l, and low single-season pathogen carryover rate f. We
note, however, that for f sufficiently small, the model
shows the high-frequency oscillations associated with pe-
riod doubling, which we do not consider here. The sta-
bilizing effects of heterogeneity C are particularly strong,

such that high values can guarantee stability irrespective
of the value of l. Specifically, limit cycles cannot occur if

(app. B). Stability thus increases2C 1 (f 2 g)/(f 2 g 1 1)
with increases in the squared coefficient of variation C of
the distribution of susceptibility and is guaranteed if

. For lower levels of heterogeneity, cycles are more2C 1 1
likely if f is large relative to g.

The biology of these patterns is best understood in terms
of single epidemics. Figure 1 shows that high levels of
infection occur either when initial host density is above
the epidemic threshold NT or when there is a high initial
density of pathogens. Limit cycles then occur when it takes
several generations for the pathogen to reach densities high
enough to suppress the host population, but suppression
continues for one or more additional generations. This
occurs when the pathogen carryover parameter f is higher
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Figure 4: Effects of epidemic length on model stability, demonstrating
that host heterogeneity in susceptibility plays a key role in stabilizing
cycles in the short-epidemic model.

so that newly hatched larvae have high relative suscepti-
bility and/or pathogens produced in the epidemic have
high overwinter survival. High values of the between-gen-
eration pathogen survival rate g, however, lead to stability
because, when there is a consistently high density of path-
ogens, disease incidence is always high enough to cause at
least a moderate epidemic, and the population never over-
shoots the disease threshold. Finally, host heterogeneity in
susceptibility C is strongly stabilizing because, as figure 1
shows, higher heterogeneity reduces the intensity of epi-
demics. As heterogeneity increases, each year’s epidemic
therefore reduces the population to near the disease thresh-
old rather than well below it, which eliminates the over-
shooting phenomenon responsible for fluctuations.

The boundaries between stability and cycles are very
similar for the short-epidemic model (not shown), and
the discrepancy declines with increasing values of pathogen
carryover f because high values of f lead to epidemics
that rapidly burn out. For values of , the boundaryf ≥ 5
between stability and cycles for the short-epidemic model
is indistinguishable from that of the infinite-epidemic
model. An important difference between the two models,
however, is that the model with short epidemics is more
likely to show unstable cycles, for which the amplitude of
the cycles becomes larger and larger over time. Indeed, as
heterogeneity C is reduced, we eventually reach a value of
C at which the short-epidemic model is apparently un-
stable (meaning that peak densities grow to unbounded
values) for all values of l. In figure 4, we show the range
of values of f and C for which the model is unstable
irrespective of l, for different values of epidemic length
T. Figure 4 thus shows that moderate levels of heteroge-
neity prevent unstable limit cycles in the short-epidemic
model, with being sufficient to guarantee stable2C 1 1/2
cycles (the infinite-epidemic model also shows these dy-
namics but only for very low levels of heterogeneity). These
effects occur because shorter epidemic periods exacerbate
the overshooting phenomenon that leads to stable limit
cycles in the first place, and the effect becomes stronger
as the epidemic length is shortened. This sort of instability
is of course unrealistic; in real populations some sort of
density dependence will act to keep populations bounded.
Nevertheless, figure 4 is interesting because it shows that
moderate levels of heterogeneity can have a stabilizing ef-
fect on outbreak dynamics.

Outbreaks in Defoliators: from
Experiments to Time Series

In this section, we explore the consequences of our ex-
perimental estimates of heterogeneity C for gypsy moth
population dynamics. Gypsy moth populations show mod-
erate to high levels of heterogeneity in susceptibility

(Dwyer et al. 1997), and the model shows that high levels
of heterogeneity are stabilizing, but gypsy moths in North
America have unstable population dynamics (Williams
and Leibhold 1995; Ostfeld et al. 1996). We therefore ask,
Can our experimental data be reconciled with the unstable
population dynamics of the gypsy moth? In particular, is
the heterogeneity in susceptibility that we observed in our
experiments so high that it would lead to stable equilib-
rium gypsy moth densities rather than outbreaks? Con-
versely, are the levels of heterogeneity in our data high
enough to give stable cycles in the model, so that it is at
least possible that populations are primarily regulated by
disease alone?

An important preliminary question is, What constitutes
outbreaking population dynamics? We will use the popular
criterion of large-amplitude fluctuations in population
density (Mattson et al. 1991). In our model, for reasonable
parameter values, large-amplitude fluctuations always oc-
cur in the form of long-period limit cycles. The statistical
evidence for cyclicity in time series of outbreaking gypsy
moth populations is mixed (Williams and Leibhold 1995),
however, so we are implicitly assuming that in many cases
the underlying cyclicity is obscured by environmental sto-
chasticity. In future work, we will explore this point fur-
ther. A second key point is that we define cycle period to
be the number of generations between peaks of host den-
sity, rather than trying to calculate when or whether pop-
ulations return exactly to previous values (a peak in density
is defined to occur when a year’s density is higher than
the preceding year’s and the following year’s densities).
Clearly, the former definition is a more ecologically mean-
ingful measure of cycle length. This kind of definition can
be problematic with noisy or chaotic data; fortunately,
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Table 1: Mean transmission rate and coefficient of variation of susceptibility derived by fitting the short-
epidemic model to data collected at different scales

Source of data Scales Transmission m2/dn̄ Heterogeneity C 95% bounds on C

Field experiments .1 m2, 1 wk
Feral strain:

1994 … .36 .90 .002, 1.70
1995 … .90 1.60 .81, 4.94
1996 … 3.37 1.44 .75, 4.22

Lab strain:
1994 … 1.07 .81 .001, 1.66
1995 … 1.94 1.00 .002, 1.65
1996 … 2.11 .77 .24, .83

Natural epidemics 4–9 ha, 7–9 wk .54 .59 …
Time series .16 ha, 15 yr 2.68 .86 …

Note: Epidemic data were collected by Woods and Elkinton (1987) from single epidemics in four naturally occurring

populations, and the model was fit to the entire epidemic time series by minimizing the sum of squares between the model

and the weekly data. Experimental data were collected by Dwyer et al. (1997) from transmission experiments using either

“feral-strain” or “lab-strain” larvae (see text for details) on single oak branches, and the model was fit to the fraction of

larvae becoming infected in each bag. Dwyer et al. (1997) describe these fitting procedures in greater detail. Time series

data are as depicted in figure 6 and were collected from 20 78.5-m2 plots (Ostfeld et al. 1996). To calculate mean transmission

from the time series data, we converted from egg masses per hectare to larvae per hectare assuming 250 eggs per eggn̄

mass and a leaf area index of 1.4 (Dwyer and Elkinton 1993). The main text gives further details on our methods of fitting

the model to these long-term data; = mean transmission rate, C = coefficient of variation of susceptibility, with m takenn̄

from Dwyer et al. (1997).

some gypsy moth time series show clearly defined peaks
and troughs, as does our model in the relevant parameter
ranges. Also, in this section, we are concerned with quan-
titative model dynamics, so we focus exclusively on the
short-epidemic model on the grounds that it is likely
to provide a more precise description of gypsy moth
dynamics.

With these points in mind, we can use the model to
assess the implications of our transmission data (Dwyer
et al. 1997), which were generated by exposing groups of
25 larvae to different densities of virus on single oak
branches in the field. An important detail is that our ex-
periments quantified heterogeneity for two different
strains of the insect that differed greatly in levels of het-
erogeneity. Larvae of the “feral” strain came from eggs
mixed together from feral populations scattered across the
states of Massachusetts, New Hampshire, and West Vir-
ginia and showed high heterogeneity, whereas larvae of the
“lab” strain came from a laboratory colony that has been
maintained for 140 generations and showed low hetero-
geneity. The feral strain was thus constructed to be as
heterogeneous as possible, while the lab strain was inten-
tionally chosen to show lower heterogeneity. The lab larvae
were nevertheless fairly heterogeneous, so we suspect that
naturally occurring feral larvae from single populations
would show levels of heterogeneity intermediate between
these two strains.

Given this caveat, the model shows that the estimates
of heterogeneity C from our data do not preclude the

possibility of cycles, in that point estimates from the lab
populations are all ≤1 (table 1). These estimates, however,
have confidence intervals that are large relative to the re-
gion of parameter space in which cycles occur. To show
this, we bootstrapped 10,000 estimates of heterogeneity C
for each larval strain in each of 2 yr of experiments (the
third year had low replication), by making eight random
draws with replacement from our eight replicates 10,000
times, and then fitting a reduced version of equations (1)
and (2) to each draw (see Dwyer et al. 1997 for more
details). This procedure showed that, for the lab-strain
larvae, nearly all of the bootstraps of the 1996 data
(99.96%) and more than half of the bootstraps of the 1995
data (52.5%) were !1. For the feral larvae, 13% of the
bootstraps of the 1996 data and 4.3% of the bootstraps of
the 1995 data were !1. In other words, only one of the
feral-strain data sets, and neither of the lab-strain data
sets, can reject the hypothesis of stable cycles. On the other
hand, because nearly half of the bootstraps of the 1995
lab-strain data are 11, that data set cannot reject the hy-
pothesis of a stable equilibrium either. Also, 15% of boot-
straps of the 1996 lab-strain data gave levels of hetero-
geneity , and as figure 5 shows, is lowC ! 0.6 C ! 0.6
enough to almost always permit unstable cycles. In other
words, our data are too noisy relative to the range of
parameters that gives stable cycles to single out stable cycles
as the only realistic outcome of the model. Nevertheless,
it is surprising that our data cannot reject the hypothesis
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Figure 5: Cycle periodicity and the parameter range that permits stable
cycles for the short-epidemic model. The cycle period and the chance of
unstable cycles both increase as fecundity l decreases.

Figure 6: Best fit of the short-epidemic model to time series data for
gypsy moth Lymantria dispar (Ostfeld et al. 1996). Parameter values are
fecundity , heterogeneity in susceptibility , and pathogenl = 5.5 C = 0.86
overwinter survival . Table 1 gives the value of .¯f = 15 n

of stable cycles given the high levels of heterogeneity in
susceptibility in the data.

Given that our transmission data do not preclude the
possibility of outbreaks, we also compare the model to
gypsy moth population data more quantitatively. Specifi-
cally, gypsy moth populations typically fluctuate over
about four orders of magnitude in density (Elkinton and
Liebhold 1990), and so we ask, Does the model show this
amplitude of fluctuations for realistic parameter values?
We define amplitude to mean the difference in density
between peaks and troughs of the population cycle. Figure
5 shows that cycle period increases with increasing values
of pathogen carryover f and decreasing values of fecundity
l and heterogeneity in susceptibility C, matching the ef-
fects of these parameters on the boundary between limit
cycles and a stable equilibrium. Figure 5 also shows that
the model can match the observed 9-yr period of gypsy
moth population fluctuations for a broad range of param-

eter values. The further requirement of an amplitude of
fluctuation of about four orders of magnitude, however,
means that fecundity l must be about 5 (not shown).
Here, “fecundity” is interpreted to mean “net population
change in the near-absence of the disease” rather than
“eggs per egg mass” (Hassell et al. 1976). Under this def-
inition, observed net gypsy moth fecundity l is about 11
(Elkinton et al. 1996). Given that the variance in net gypsy
moth fecundity from year to year is large ( ,SE = 9.1 n =

), model and data are in approximate agreement.8
More quantitatively, in figure 6, we show the best fit of

the model to a time series for gypsy moth (Ostfeld et al.
1996). By first transforming the data according to

(Turchin and Taylor 1992), we were able tolog [N /N ]e t11 t

fit the nondimensionalized short-epidemic model to the
data using only fecundity l, heterogeneity C, and pathogen
survival f (app. A; note that we assume ). We foundg = 0
the best-fit values of these parameters by calculating the
sum of the squared differences between the model and the
data for parameter combinations that spanned the area of
parameter space in which the model shows stable cycles.
To generate the figure, we then used the model output for
the best-fit values of the parameters and varied the ratio

until we had achieved a good fit between the hostn̄/m
density predicted by the model and the host density in the
data (app. A), as determined again by least squares. Al-
though this time series is short and is based on a sampling
area of only 0.16 ha (in particular the low points of each
cycle are based on very small sample sizes; Ostfeld et al.
1997), nevertheless, figure 6 demonstrates that the model
does a good job of reproducing the data. Also, estimates
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of mean transmission and heterogeneity C from thesen̄

data are close to the parameters estimated both from our
experimental data and from single epidemics (table 1).

Discussion

Our work has led us to a general conclusion that is iden-
tical to that of Anderson and May’s (1981) work, that
host-pathogen interactions are likely to cause outbreaks in
forest-insect populations. Our models include realistic fea-
tures of insect-pathogen interactions that are missing from
Anderson and May’s models, however, and this additional
realism leads us to different conclusions about which bio-
logical details are important in driving outbreaks. Specif-
ically, Anderson and May emphasized the importance of
high pathogen survival in causing long-period cycles, but
our models have shown instead that cycles are possible
even with relatively low pathogen survival because of the
high average susceptibility of early stage larvae relative to
later-stage larvae. Also, Anderson and May used contin-
uous-generation host-pathogen models; because the sim-
plest such models give stable population dynamics, a major
thrust of their work was that the long-lived infectious
stage, typical of insect pathogens, destabilizes their models
enough to give long-period cycles. In contrast, because
our models realistically assume discrete host generations,
they are likely to show unstable dynamics. Consequently,
we instead emphasize a mechanism that stabilizes what
would otherwise be unstable cycles, specifically, host het-
erogeneity in susceptibility. In this respect, discrete-gen-
eration host-pathogen models are more like discrete-gen-
eration host-parasitoid models (Hassell et al. 1991), a point
first made by Briggs and Godfray (1996).

The differences between our conclusions and those of
Anderson and May are due to differences in model struc-
ture for which our gypsy moth data provide strong sup-
port. First, our experimental data strongly support the
inclusion of host heterogeneity in susceptibility and delays
between infection and death in our epidemic model equa-
tions (1) and (2) (Dwyer et al. 1997). Second, discrete host
generations are an obvious feature of gypsy moth popu-
lations, and the experiments of Murray and Elkinton
(1989, 1990) have made clear the importance of virus
contamination of egg masses for the initiation of epidem-
ics. Breaking the gypsy moth life cycle into epidemic and
interepidemic periods is therefore a crucial feature of our
model. This structure is further supported by the ability
of the models to accurately describe the dynamics of gypsy
moth populations at spatial scales of entire regions and
over timescales of decades (figs. 5, 6). In particular, our
estimates of the average transmission rate and of hostn̄

heterogeneity in susceptibility C from long-term data are

similar to estimates from short-term experiments (table
1).

Comparison of our model to the model of Briggs and
Godfray (1996) suggests that host heterogeneity in sus-
ceptibility is an especially important detail. Briggs and
Godfray’s main model is similar to ours in allowing for
discrete host generations and a single epidemic each year.
A major difference, however, is that instead of explicitly
incorporating a distribution of host heterogeneity in sus-
ceptibility, they incorporate a kind of phenomenological
heterogeneity in transmission, following a formulation
used in host-parasitoid models. In the resulting model,
cycles are only found for a very narrow range of param-
eters, unless long-term pathogen survival is allowed. Our
model most closely matches Briggs and Godfray’s main
model if we set single-generation pathogen carryover

and long-term pathogen survival . For thesef ≤ 1 g = 0
parameter values, however, our model produces cycles for
a broad range of values of fecundity l and host hetero-
geneity C. Even when Briggs and Godfray allowed for long-
term pathogen survival ( ), the period of the cyclesg 1 0
apparently never exceeded four generations. These differ-
ences suggest that host heterogeneity in susceptibility is of
profound importance for the dynamics of insect-pathogen
interactions and that the details of how heterogeneity is
incorporated matter a great deal. For the particular case
of host heterogeneity in susceptibility, our results suggest
that a mechanistic approach is crucial.

Our data, however, suggest some caveats. First, the
short-epidemic model shows that the levels of heteroge-
neity in susceptibility that we observe in our data are likely
to stabilize what might otherwise be unstable cycles, but
the confidence intervals on our data are large enough that
the importance of heterogeneity in susceptibility in leading
to stable cycles is an open question. In particular, Bonsall
et al. (1999) showed that adding nondisease direct density
dependence to Briggs and Godfray’s (1996) host-pathogen
model also tends to stabilize unstable cycles. Because this
direct density dependence is typical of gypsy moth pop-
ulations at high density (Carter et al. 1991), the work of
Bonsall et al. (1999) suggests that both host heterogeneity
and competition for food act to stabilize disease-driven
fluctuations in gypsy moth populations. In fact, there is
at least a short list of other biological details of gypsy moth
population dynamics that are missing from our model but
that are known to be important in gypsy moth population
dynamics. Indeed, low-density gypsy moth populations
may be kept in check by density-dependent small-mammal
predation (Elkinton and Liebhold 1990). Evidence for such
density dependence is equivocal (Elkinton et al. 1996), but
evidence for the importance of small-mammal predation
on late instars and pupae, especially by the white-footed
mouse Peromyscus leucopus, is strong. Changes in low-
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density gypsy moth populations are strongly correlated
with changes in densities of white-footed mice (Elkinton
et al. 1996; Ostfeld et al. 1996), and experimental removals
of small mammals lead to sharp increases in gypsy moth
populations (Jones et al. 1998). The major food of white-
footed mice, however, is acorns. Consequently, changes in
mouse population densities are strongly correlated with
changes in the acorn crop (Elkinton et al. 1996; Ostfeld
et al. 1996), and experimental additions of acorns can
prevent increases in gypsy moth populations (Jones et al.
1997). Because the acorn crop depends in turn on regional
weather patterns, the strongest overall effect of small-
mammal predation on gypsy moth population dynamics
may be that it introduces variability in gypsy moth net
fecundity at low density. In particular, several successive
years of poor acorn crops lead to collapses in small mam-
mal populations that allow gypsy moth populations to
grow to densities at which small-mammal predation is
insignificant. Such populations eventually reach the high
densities at which virus epidemics occur. This variability
may explain some of the fluctuations seen in time series
of gypsy moth defoliation data (Williams and Liebhold
1995) and may affect the periodicity and stability of the
fluctuations in our models. An important future direction
for modeling gypsy moth population dynamics is thus to
include small-mammal predation and environmental sto-
chasticity. Likewise, quantitative application of our models
to the dynamics of other forest insects may require other
biological details. Western tent caterpillars, for example,
experience reduced fecundity due to the exposure of larvae
to low doses of virus (Rothman and Myers 1994), an effect
that does not occur in gypsy moths (Murray et al. 1991).
We therefore echo calls for models that investigate multiple
factors in insect population dynamics (Bowers et al. 1993;
Hunter and Dwyer 1998).

It is important to emphasize, however, that the dynamics
of the gypsy moth and other outbreaking insects may be
less complicated than is sometimes believed. For example,
recent data suggest that maternal effects (Myers et al. 1999;
M. Erelli, personal communication) and induced host-
plant defenses (D’Amico et al. 1998) may have little effect
on gypsy moth population dynamics. A major point of
our work is thus to illustrate the usefulness of simple mod-
els. Indeed, the infinite-epidemic model tells us much of
what we need to know about the short-epidemic model,
yet the former can be analyzed mathematically and so
understood more deeply than the latter, which can only
be simulated. In fact, our infinite-epidemic model was
inspired by May’s (1981) model, which makes the addi-
tional assumption that the yearly epidemic is begun by an
infinitesimally small density of pathogens. Simple models
can thus be at least as useful as giant simulation models
in understanding host-pathogen dynamics (Onstad et al.

1990) and have the advantage of being more easily
understood.
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APPENDIX A

Derivation of the Infinite-Epidemic Equation

In this appendix, we derive equations (4) and (5), which
give the initial conditions at the start of the epidemic, and
we derive the infinite-epidemic equation (8) (of which eq.
[3] is a special case).

The Egg-Mass Infection Process

As we discuss in the main text, our assumption is that the
process by which hatching larvae become infected is es-
sentially identical to the process by which larvae become
infected later in the season. We therefore model it using
the equations

­S
= 2hnSZ , (A1)t

­t
`

dP
= hZ nS(n, t)dn, (A2)tEdt 0

where h is the susceptibility of hatching larvae relative to
the susceptibility of larvae later in the season. For sim-
plicity, here we assume that overwintering pathogens can
infect egg masses for some fixed period of time, say, of
length . Integrating equations (A1) and (A2) from 0 tot̂

gives equations (4) and (5) in the main text, with thet̂
definition . Allowing for alternative assumptionsˆr { ht
about the length of time for which egg masses are exposed
and the pathogen is infectious is not difficult; a constant
rate of breakdown v of the pathogen, for example, gives

. Because we do not expect to be able toˆ2vtr { h(1 2 e )
distinguish among these processes, in the main text we
introduce only the aggregate parameter r that allows for
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differences in both mean susceptibility and in length of
the exposure period.

The Infinite Epidemic I: Force of Infection and
Gamma-Distributed Susceptibility

Next, we derive the infinite-epidemic equation (6) by al-
lowing in equations (1) and (2) (see Kermack andt r `
McKendrick 1927, for a similar analysis, and Metz and
Diekmann 1986, for an extension of Kermack and
McKendrick’s approach). We start by integrating equation
(1) to obtain

`
S(n, )̀

log = 2n P(t)dt. (A3)ES(n, 0) 0

For convenience in what follows, we define the force of
infection over the course of the epidemic, ,`F { P(t)dt∫0

so that our next step is to find an expression for F. The
simplest way to do this is to observe that the force of
infection arises either from new infections or from ca-
davers produced in previous generations (Zt). If we then
define L1 to be the average infectious lifespan of cadavers
arising from new infections and L2 to be the average in-
fectious lifespan of cadavers that were produced in pre-
vious generations, we have

ˆ ˆF = L [S(0) 2 S( )̀] 1 L Z . (A4)1 2 t

Alternatively, we can follow Kermack and McKendrick’s
(1927) approach. To do this, we first generalize equations
(1) and (2). Specifically, we define the distribution of times
between infection and infectiousness to be f(a), the sur-
vival probability function for infectious cadavers produced
during the epidemic to be l1(a), and the survival proba-
bility function for cadavers present from the beginning of
the epidemic to be l2(a), where a is the age of the infection
or the age of the infectious particle, respectively. Then, if
we let i(t) be the rate of production of new infections at
time t, we can write an expression for the force of infection
over the course of the epidemic:

` t t

F = i(v) f(r 2 v)l (t 2 r)drdvdtE E E 1
0 0 v

`

1 Z l (t)dt. (A5)tE 2
0

The first integral on the right-hand side of equation (A5)
is a sum of terms that gives the cadavers contributed by
individuals that were infected at time v, became infectious
at time r, and then remained infectious until time t. If we

then follow Kermack and McKendrick by rearranging the
order of integration and making several substitutions, and
so forth, we again arrive at our force of infection equation
(A4). Note that equation (A4) makes no assumptions
about the distribution of times between infection and
death or about the distribution of the lifetimes (breakdown
rates plus translocation rates) of infectious cadavers. Equa-
tion (A4) is therefore also a limiting case of the short-
epidemic model.

Next, we combine equation (A3) with equation (A4) to
get

S(n, )̀ ˆ ˆlog = 2n{L [S(0) 2 S( )̀] 1 Z L }. (A6)1 t 2S(n, 0)

To finish the derivation, we assume that heterogeneity in
susceptibility is gamma distributed with mean andn̄

squared coefficient of variation V. If is the total hostŜ(t)
population density at time t during the epidemic, we can
integrate equation (A6) to obtain

21/Vˆ ˆ ˆ ˆ¯S( )̀ = S(0)(1 1 Vn{L [S(0) 2 S( )̀] 1 Z L }) (A7)1 t 2

Substituting for , and recalling that inˆ ˆ1 2 I S( )̀/S(0)
generation t , gives an implicit expression forŜ(0) { Nt

the proportion of the population infected in the epidemic:

21/V¯1 2 I = [1 1 Vn(L N I 1 rL Z )] . (A8)1 t 2 t

In the main text, we further substitute the coefficient of
variation , and we assume that the breakdown rates2C = V
of current-generation and previous-generation cadavers
are the same, so that .L { L { 1/m1 2

Because the left-hand side of equation (A8) goes from
1 to 0 as I goes from 0 to 1, while the right-hand side
remains between 0 and 1, it is clear that the equation must
have a root. Because the second derivative of the right-
hand side can be shown to be everywhere positive, and
since the curve given by the right-hand side crosses the
straight line given by the left-hand side from below to
above, this solution must be unique.

The Infinite Epidemic II: A Distribution-Free
Approach Using Moment Closure

It happens that the assumption of gamma-distributed sus-
ceptibility is not strictly necessary to derive equation (A8).
To show this, we use an approximation method introduced
by Dushoff (1999), in which one reduces a partial differ-
ential equation to a set of ordinary differential equations
for the moments of the distribution of susceptibility in the
host population. We first define
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`

jS = n S(n, t)dn, (A9)j E
0

where Sj is the jth moment of the distribution of suscep-
tibility. Differentiating equation (A9) with respect to time
and substituting from equation (1) gives

dSj
= 2PS . (A10)j11dt

It is convenient to define . In particular,m { S /Sj j 0

is the mean of the distribution of host suscep-m { m1

tibility. By the quotient rule of differentiation, we then
have

dmj
= 2P(m 2 mm ). (A11)j11 jdt

We have now replaced the partial differential equation (1)
with a set of ordinary differential equations in terms of
the moments of the distribution of susceptibility. The re-
maining problem is that, as the moment equation (A11)
shows, the rate of change of each moment depends on the
next higher moment, so that we must approximate the
higher-order moments.

We construct an approximation by assuming that the
coefficient of variation of the distribution of susceptibility
remains constant, so that we need keep track of only the
first two moments of the distribution. This means that, if
V is again the squared coefficient of variation, we have

2m 2 m2 = V, (A12)
2m

so that we have

dm
2= 2VPm , (A13)

dt

ˆdS ˆ= 2mPS, (A14)
dt

where total population density Ŝ(t) { S (t)0

Surprisingly, the orbits of this system can be found ex-
plicitly. Divide equation (A13) by equation (A14) and in-
tegrate from 0 to t, to arrive at

V

Ŝ(t)
¯m = n , (A15)[ ]Ŝ(0)

recalling that the mean at time 0 is just the distri-m(0)
bution mean .n̄

We now substitute equation (A15) into equation (A14)
to get

V
ˆ ˆdS S(t) ˆ¯= 2n PS. (A16)[ ]ˆdt S(0)

Rearranging gives

ˆ ¯dS n
= 2 Pdt. (A17)

V11 Vˆ ˆS(t) S(0)

Now we can integrate over t from 0 to to get`

n̄
2V 2Vˆ ˆS(0) 2 S( )̀ = 2 F, (A18)

VŜ(0)

where F is the total force of infection, as above. Re-
arranging, substituting for F, and substituting I for the
fraction infected at the end of the epidemic again gives
equation (A8).

Rescaling

To rescale the infinite-epidemic model, we divide host den-
sities Nt and pathogen densities Zt by the epidemic thresh-
old , which gives the nondimensionalized equa-¯N { m/nT

tions (9)–(11). Our simulations of the short-epidemic
model rely on the moment-closure techniques described
above. Equations (A1) and (A2) then become

V
ˆ ˆdS S(t)ˆ¯= 2rnZ S(t) , (A19)t [ ]dt Nt

V
ˆdP S(t 2 t)ˆ¯= nZ S(t 2 t) . (A20)t [ ]dt Nt

Equations (1) and (2) become

V
ˆ ˆdS S(t)ˆ¯= 2nPS , (A21)[ ]dt Nt

V
ˆdP S(t 2 t)ˆ¯= nP(t 2 t)S(t 2 t) 2 mP. (A22)[ ]dt Nt

The short-epidemic model is then

N = lN (1 2 I), (A23)t11 t

Z = f N I 1 gZ , (A24)t11 t t

where and T is the length of the epi-ˆ ˆI = [S(T) 2 S(0)]
demic. We can then rescale as before.
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APPENDIX B

Qualitative Analysis of the Infinite-Epidemic Model

In this appendix, we analyze the infinite-epidemic model,
equations (9)–(11), which are the nondimensionalized
version of equations (6)–(8). We derive an expression for
the boundary between a stable equilibrium and limit cy-
cles, and we show that the squared coefficient of variation
of the distribution of susceptibility guarantees sta-2C 1 1
bility of the model against limit cycles (we have also shown
that guarantees stability against flip bifurcations,2C 1 1/2
but we omit the proof in the interests of brevity).

We begin by observing that the trivial equilibrium
, is globally stable for all . In what follows,N = 0 Z = 0 l ! 1

we therefore restrict our attention to .l 1 1
Although taking a model step requires solution of the

implicit equation (11), the nontrivial equilibrium can, re-
markably, be written explicitly in terms of the parameters.
From equation (11), we calculate the equilibrium value of
I, . Then equation (10) gives in terms of theI = 1 2 1/l Z
parameters and , and we can substitute into equationN
(9) to find the equilibrium:

V(l 2 1)(1 2 g)l
N = ,

V(1 1 f 2 g)(l 2 1)

Vf(l 2 1)
Z = . (B1)

V(1 1 f 2 g)

We can calculate the Jacobian matrix at the equilibrium
(B1) by differentiating (9)–(11) with respect to N and Z,
respectively:

1 2 lNI 2lNIN ZJ = , (B2)[ ]fI 1 fNI fNI 1 gN Z

where IN and IZ are the respective partial derivatives of I
at the nontrivial equilibrium, which can be calculated by
differentiating (11) and solving. Note that .I = IIN Z

We analyze stability of the nontrivial equilibrium using
the Jury criteria (Murray 1993). The equilibrium will be
stable if and only if the determinant ( ) and trace (tr)det
obey the inequalities:

FtrF 2 1 ! det ! 1, (B3)

with “flip” bifurcations leading to period doubling if the
first inequality is violated and “Hopf” bifurcations leading
to longer-period cycling if the second is violated with

. To investigate limit cycles, we examine the deter-tr ! 0
minant. From the Jacobian (B2),

det = g 1 I N(f 2 lgI 2 lfI). (B4)p

Substituting for , , and givesN I IZ

det = g

V[l(f 2 g) 1 g](1 2 g)(l 2 1)
1 . (B5)

V VV l(l 2 1)(1 1 f 2 g) 2 (1 2 g)(l 2 1)

When it is recalled that and , it can be showng ! 1 l 1 1
that the denominator in equation (B5) is positive. Thus
the stability criterion can be rearranged to givedet ! 1

Vl 2 1 (1 1 f 2 g)(l 2 1)
! . (B6)

VV l l(f 2 g) 1 1

We now show that this criterion always holds when
. The right-hand side can be shown to be a decreasingV 1 1

function of and thus always greater thanh { f 2 g

, the value it approaches as . The left-hand(l 2 1)/l h r `
side is a decreasing function of V and is thus less than

, whenever . Thus guarantees no limit(l 2 1)/l V 1 1 V 1 1
cycles.

More generally, by taking the second derivative, we can
show that the criterion is satisfied when l is near 1 pre-
cisely when

h 2 1
V 1 , (B7)

h 1 1

where is defined for convenience. Similarly, weh { f 2 g

can use L’Hôpital’s rule to show that the criterion is sat-
isfied when if, and only if,l r `

h
V 1 . (B8)

h 1 1

Thus, when , the criterion (B6) holds bothV 1 h/(h 1 1)
for and for . We can in fact show that it holdsl r 1 l r `
for all l and thus that there are no limit cycles when (B8)
holds. When , (B6) holds(h 2 1)/(h 1 1) ! V ! h/(h 1 1)
for l near 1, but not for large l; thus, there is a Hopf
bifurcation at some value of l. Finally, when V ! (h 2

(which is possible only when ), (B6) does1)/(h 1 1) h 1 1
not hold for small or large l. In fact, we can show that
it is not true for any , and that there is a “loopl 1 1
bifurcation” at and thus cycles of very long periodl = 1
when l is near 1.
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