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abstract: In many animal host-pathogen interactions, uninfected
hosts either avoid or are attracted to infected conspecifics, but un-
derstanding how such behaviors affect infection risk is difficult. In
experiments, behaviors are often eliminated entirely, which allows
demonstration that a behavior affects risk but makes it impossible
to quantify effects of individual behaviors. In models, host behaviors
have been studied using ordinary differential equations, which can
be easily analyzed but cannot be used to relate individual behaviors
to risk. For many insect baculoviruses, however, quantifying effects
of behavior on risk is straightforward because transmission occurs
when host larvae accidentally consume virus-contaminated foliage.
Moreover, increases in computing power have made it possible to
fit complex models to data. We therefore used experiments to quan-
tify the behavior of gypsy moth larvae feeding on oak leaves con-
taminated with virus-infected cadavers, and we tested for effects of
cadaver-avoidance behavior by fitting stochastic simulation models
to our data. The models that best explain the data include cadaver
avoidance, and comparison of models that do and do not include
cadaver avoidance shows that this behavior substantially reduces in-
fection risk. Our work demonstrates that host behaviors that affect
exposure risk play a key role in baculovirus transmission and adds
to the growing consensus that host behavior can strongly alter path-
ogen transmission rates.

Keywords: Lymantria dispar, host-pathogen interaction, host behav-
ior, nucleopolyhedrovirus, disease ecology, behavior and disease.

Introduction

In many animal host-pathogen interactions, uninfected
hosts either avoid or are attracted to infected conspecifics
(Hawley et al. 2011). Attraction and avoidance behaviors
likely play a key role in the spread of disease within pop-
ulations, and so understanding the consequences of these
behaviors for infection risk is an important area of current
research (Antolin 2008). The complexity of such behaviors,
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however, means that both empirical and theoretical re-
search approaches face significant obstacles.

First, experiments have been used to demonstrate that
host avoidance behaviors can alter infection risk but typ-
ically only by eliminating the behavior of interest. For
example, Kiesecker et al. (1999) showed that uninfected
bullfrog (Rana catesbeiana) tadpoles avoid conspecifics in-
fected with the fungal pathogen Candida humicola. To
demonstrate that this behavior reduces risk, the authors
confined uninfected hosts at a range of distances from an
infected conspecific to show that risk falls with distance
from an infected host. Similarly, Behringer et al. (2006)
showed that Caribbean spiny lobsters (Panulirus argus)
avoid conspecifics infected with the species-specific Pan-
ulirus argus virus. To again demonstrate that the avoidance
behavior reduces infection risk, the authors confined in-
fected and uninfected hosts together in the laboratory to
show that proximity produces infection rates that are sub-
stantially higher than those observed in the field. These
experiments strongly suggest that avoidance reduces in-
fection risk, but they do not allow for an understanding
of how infection rates are determined by individual be-
haviors, such as changes in movement rate or turning angle
in response to the presence of an infected conspecific.

Second, mathematical models have provided invaluable
guidance in disease ecology (Keeling and Rohani 2007),
but most disease models consist of ordinary differential
equations that track host densities or numbers over time
(Anderson and May 1992), whereas mechanistic models
of behavior must additionally track densities or numbers
over space and how densities or numbers affect movement
behavior. These latter complications require either partial
differential equations (Kareiva and Odell 1987) or complex
computer algorithms (Longini et al. 2005), and so standard
models are of limited usefulness for understanding the
consequences of individual host behaviors for infection
risk. Standard models have nevertheless played an im-
portant role in managing diseases for which host behaviors
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Host Avoidance and Infection Risk 101

are relatively simple (Keeling and Rohani 2007), suggesting
that the lack of models that allow for complex behaviors
may hinder disease management.

For example, Hosseini et al. (2004) used ordinary dif-
ferential equation models to study the dynamics of my-
coplasmal conjunctivitis (Mycoplasma gallisepticum) in
house finches (Carpodacus mexicanus) in North America.
The models that best describe infection rate data allow for
periodic increases in transmission as a phenomenological
description of the seasonal flocking behavior that occurs
independently of infection status. Later experiments
showed that uninfected hosts prefer to associate with in-
fected conspecifics, presumably because sick individuals
are less aggressive (Bouwman and Hawley 2010), but such
attraction behavior is not well described by the seasonally
fluctuating transmission in the Hosseini et al. model. Haw-
ley et al. (2011) therefore constructed an ordinary differ-
ential equation model that allows for attraction behavior
in terms of covariation between mean susceptibility and
mean contact rates, but the resulting model does not ex-
press infection risk in terms of individual behaviors.

Here we combine the strengths of the experimental and
modeling approaches to understand the effects of host
avoidance behavior on the risk of baculovirus infection in
the gypsy moth (Lymantria dispar). Insect baculoviruses
are convenient for studying the effects of host behavior
on pathogen transmission because transmission in many
insects occurs when host larvae accidentally consume fo-
liage contaminated with the infectious cadavers of con-
specifics (Cory and Myers 2003). It is therefore possible
to directly observe transmission events, which in turn
makes it possible to quantify host behaviors that alter in-
fection risk (Dwyer et al. 2005). Moreover, previous choice
tests have shown that gypsy moth larvae prefer uncontam-
inated foliage to cadaver-contaminated foliage, suggesting
that avoidance of infectious cadavers is an important
means by which gypsy moth larvae reduce their infection
risk (Capinera et al. 1976; Parker et al. 2010). Choice tests,
however, leave an important question unanswered: does
cadaver-avoidance behavior actually reduce a gypsy moth
larva’s risk of infection?

To answer this question, we constructed a model that
included avoidance behavior, and we tested whether it
provided a better explanation for data from laboratory
feeding experiments than a model that did not include
avoidance behavior. As in previous experiments (Kiesecker
et al. 1999; Behringer et al. 2006), infected and uninfected
hosts in our experiments were confined in an arena of
limited area, but the spatial scale over which gypsy moth
larvae avoid cadavers is small enough that the arenas nev-
ertheless appeared to allow for natural feeding, and models
based on the experiments predict infection rates in the
field with reasonable accuracy. As in previous modeling

studies (Hosseini et al. 2004), we quantified the conse-
quences of avoidance behavior on infection risk by com-
paring the predictions of models with and without the
behavior, but we explicitly allowed for spatial structure
and mechanistic feeding behavior, and so our models con-
sist of stochastic simulation algorithms. We then used the
corrected Akaike information criterion (AICc; Burnham
and Anderson 2002) to show that the model that best
explains the data includes cadaver avoidance. We thus fol-
low Civitello et al. (2013), who similarly used model se-
lection to show that feeding behavior affects the risk that
Daphnia dentifera consume and become infected with a
fungal pathogen, with the difference that Civitello et al.’s
models include only feeding rates, whereas our models
additionally allow individual hosts to decide where to feed.

To choose the best model, we first photographed the
feeding patterns produced by individual larvae on virus-
contaminated leaves and then recorded whether each larva
subsequently became infected. We next constructed mod-
els that predict both the pattern of feeding and the prob-
ability of infection for each larva and then used maximum
likelihood to fit the models to our data. Next, we used
AICc analysis to show that the best model assumes that
larvae can sometimes detect and avoid infectious cadavers.
As evidence that our experiments did indeed allow for
roughly realistic behavior, we show that the best model
can successfully predict the outcome of previous field ex-
periments (Elderd et al. 2008). Finally, by comparing the
predictions of models that do and do not include cadaver
avoidance, we show that avoidance behavior substantially
reduces a gypsy moth larva’s infection risk. Our work pro-
vides important support for the hypothesis that pathogen
transmission rates are often altered by host behaviors (An-
tolin 2008; Hawley et al. 2011), and our results have im-
plications for the use of baculoviruses in insect pest control
(Moreau and Lucarotti 2007).

Our models of overall infection risk include submodels
that predict, first, the probability of infection given exposure
and, second, the probability of exposure. Because the sub-
models were fit separately to different features of the ex-
perimental data, we first describe the laboratory experiments
that produced the data, then how we fit each submodel to
the data, and finally how we combined the two submodels
and tested the resulting model predictions using data from
field experiments. Each of the modeling sections, therefore,
has its own methods and results sections.

Natural History and Experimental Methods

In North America, the gypsy moth is an invasive, out-
breaking pest of hardwood forests (McManus and Mc-
Intyre 1981; Elkinton and Liebhold 1990). Gypsy moth
outbreak cycles are driven partly by epizootics of the nu-
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102 The American Naturalist

cleopolyhedrovirus LdMNPV (Woods and Elkinton 1987;
Dwyer et al. 2004), a species-specific baculovirus that is
used as an environmentally benign microbial insecticide
(Webb et al. 1990, 2005). Previous choice tests showed
that larvae prefer to feed on uncontaminated foliage rather
than on cadaver-contaminated foliage (Capinera et al.
1976) and that this behavior is heritable (Parker et al.
2011). In choice tests, however, leaf material is presented
to larvae in the form of small pieces of leaf that are either
entirely contaminated or entirely uncontaminated,
whereas in nature, larvae feed on entire leaves, and typi-
cally only a small fraction of a leaf is contaminated with
cadavers. As in experiments with other host-pathogen sys-
tems (Kiesecker et al. 1999; Behringer et al. 2006), choice
tests thus do not allow for an understanding of how in-
dividual behaviors determine infection risk.

In our experiments, we therefore instead allowed larvae
to feed for 24 h on fully developed leaves in plastic clam-
shell boxes (note that we carried out two replicate exper-
iments; see appendix, available online, for experimental
details). This allowed us to quantify how close to a cadaver
a larva must feed before it can detect and avoid the cadaver
and how close it must feed to a cadaver in order to become
infected. The boxes are smaller than the area within which
a gypsy moth larva may move over 24 h in the field, but
larvae nevertheless appeared to feed normally. Moreover,
as we will show, our model provides a priori predictions
of infection rates that are close to data from field exper-
iments. Our data thus consist of leaf photographs before
and after feeding and the postfeeding infection status of
each larva.

We next used the image analysis program ImageJ to
create a composite of each pre- and postfeeding photo-
graph (http://rsbweb.nih.gov/ij/; appendix). Each com-
posite image shows both the intact leaf and the area eaten
by the larva (fig. A2; figures A1–A8 are available in the
online appendix). These images allowed us to first confirm
that the total area eaten and the number of feeding bouts
did not differ between larvae that fed on uncontaminated
control leaves and larvae that fed on cadaver-contaminated
leaves (appendix). Feeding is therefore unaffected by over-
all contamination on a leaf, implying that infection risk
is determined by feeding behavior at a spatial scale smaller
than that of an entire leaf.

Modeling the Probability of Infection Given Exposure

Our overall goal was to infer how infection risk is affected
by larval feeding behavior, which effectively determines
exposure risk. To quantify the effects of exposure on in-
fection risk, however, it was also necessary to quantify the
probability of infection given exposure. Therefore, we first

used our data to choose between competing mechanistic
models of the probability of infection given exposure.

Data on the probability of infection given exposure are
often analyzed using generalized linear models (GLMs;
Bolker et al. 2009; Bouwman and Hawley 2010; Parker et
al. 2011). GLMs were insufficient for our purposes, however,
because to understand feeding behavior, we had to take into
account the spatial structure inherent in the infection pro-
cess (D’Amico et al. 2005), which cannot be easily included
in a GLM. For example, depending on the distribution of
virus on a leaf, a larva that consumes a small amount of
leaf tissue close to a cadaver could have a lower risk of
infection than a larva that consumes a larger amount of leaf
tissue farther away from the cadaver. Explicitly allowing for
this effect using a GLM is difficult, but it is straightforward
using a mechanistic model. Two of our simpler models are
nevertheless almost identical to GLMs, but reassuringly in
both cases, the GLM and the mechanistic model have very
similar AICc scores (appendix).

Models

To fit models to our data, we first converted the 235 leaf
images from our experiments into numerical grids. Be-
cause the photographs consist of pixels, it was straight-
forward to discretize the area of a leaf into cells of uniform
area that preserved the relative size and shape of the leaf,
the cadavers on the leaf, and the feeding bouts on the leaf.
For ease of manipulation, the grids were also shrunk by
half, again in a manner that preserved shapes and sizes
(fig. A1).

We then assumed that a single larval bite is equal to the
area of a grid cell (0.1 mm2), an assumption that is justified
by the ability of the resulting model to produce realistic
feeding bouts and estimates of infection risk. We then
created five models of the probability of infection given
exposure, and we used the data to choose the best model.
Recommended practice in model selection is to consider
a reasonably small set of biologically plausible models to
reduce the risk of selecting an incorrect model by chance
(Burnham and Anderson 2002). We therefore considered
a small number of models that were based on many hours
of observations of gypsy moth larval feeding.

First, to allow for the possibility that feeding history had
no effect on infection risk, we constructed a null model
with no effects of either feeding behavior or spatial struc-
ture. In this model, the probability of infection Pj for larva
j is the overall fraction infected in the experiments, so that
Pj p 51/235 p .217 for all j, where 51 is the total number
infected and 235 is the total number of insects.

We next constructed a model that includes the mini-
mum distance that a larva fed from a cadaver. In this
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Table 1: Corrected Akaike information criterion (AICc) scores, maximum likelihood estimates, and bootstrapped 95% confidence
intervals (CIs) for our probability of infection models, in order of increasing AICc score

Model AICc DAICc AICc weights Parameters 95% CI

Closest distance to cadaver (nonlinear) � area eaten
S qj �ax �bsP p 1 �� (1/1 � e )j sp1

227.77 .0 .806 a p 2.98,
b p 4.37,
q p .195

(.65, 5.42),
(3.01, 6.95),
(.022, .45)

Minimum distance eaten to a cadaver (nonlinear)
q�ax �bjP p 1 � (1/1 � e )j

230.64 2.87 .192 a p 1.50,
b p �.91,
q p .21

(.10, 2.71),
(�2.15, 3.15),
(.07, .61)

Minimum distance eaten to a cadaver (linear)
�ax �bjP p 1 � (1/1 � e )j

240.64 12.86 .001 a p .038,
b p .975

(.002, .11),
(.122, 1.38)

Null model (constant probability of infection) 247.88 20.10 3.48 # 10�5 P p .217 (.17, .29)
Area eaten

SjP p 1 �� hj sp1 249.65 21.88 1.43 # 10�5 h p .999957 (.999953, .999961)

Note: The probability of infection given exposure is Pj. Note that in the models labeled “nonlinear,” the probability of infection is a nonlinear function

of distance on a logit scale, whereas for the model labeled “linear,” the probability of infection is a linear function of distance on a logit scale.

model, additional bites at the same or greater distance had
no effect on a larva’s overall risk of infection:

1
P p 1 � . (1)j �ax �bj1 � e

Here xj is the minimum distance between individual j’s
bites and a cadaver, and the variables a and b are fit
parameters describing the effects of distance. Because the
distribution of the virus around a cadaver may be quite
complex, we also considered a model that includes the
additional fit parameter q to allow for more complex ef-
fects of distance:

1
P p 1 � . (2)qj �ax �bj1 � e

We also considered a model that neglects the effects of
distance from a cadaver and instead allows only for the
effects of area eaten. The probability of remaining unin-
fected after a single bite, h, is then the same for every cell,
and so the probability of infection varies only with Sj, the
number of bites eaten by individual j:

Sj

P p 1 � h. (3)�j
sp1

Finally, we allowed for both total area eaten and complex
effects of distance at each bite:

Sj 1
P p 1 � . (4)� qj �ax �bssp1 1 � e

Here Sj is again the total number of bites; xs is the distance
between bite s and a cadaver; and a, b, and q are again
fit parameters that describe the effects of distance. A cu-
mulative model that omitted q did not improve the fit of
the model (results not shown).

Because larvae were effectively independent, we treated

them as independent Bernoulli trials (Ross 2005), with log
likelihood calculated according to

N Nu i

L p ln (1 � P) � ln (P). (5)� �j j
jp1 jp1

Here Nu and Ni are the number of uninfected and infected
individuals at the end of the experiment (51 and 184,
respectively), while Pj is determined by each successive
model.

To maximize the likelihood, we used the multimin func-
tion of the GNU Scientific Library in the C programming
language (Galassi et al. 2009). We then chose the best
model using the AICc model selection criterion (Burnham
and Anderson 2002), and we calculated confidence inter-
vals by drawing 300 replicate sets of 235 leaf grids with
replacement from the data and refitting the model to each
replicate data set.

Results

In the best model, equation (4), the probability of infection
depends on both the number of bites consumed at each
distance and on complex effects of distance (table 1; all
underlying data have been deposited in the Dryad Digital
Repository: http://doi.org/10.5061/dryad.q6h4n [Eakin et
al. 2014]). Because different selection criteria can some-
times give different results, in table A1 (tables A1–A4 avail-
able in the online appendix) we show that Bayesian in-
formation criterion (BIC) scores were virtually identical
to the AICc scores. Infection risk is thus affected both by
larval feeding history and the small-scale spatial distri-
bution of the virus. Table 1 shows that there is also mod-
erate support for the distance-only model, equation (2),
further emphasizing the importance of distance from a
cadaver on infection risk. Using the best-fit parameter es-
timates in the two best models then confirmed that the
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Figure 1: Probability of infection calculated using the two best models, equations (2) and (4). A, Probability per feeding bout. B, Probability
per bite.

leaf area contaminated with virus is tightly localized
around the cadaver (fig. 1).

Because the best model includes effects of both distance
and number of bites, we can use it to understand the
relative importance of each factor. When a caterpillar con-
sumes a single bite of a cadaver, the distance to the cadaver
is 0 mm, which in the best model gives a probability of
infection of 1 � 1/(1 � exp(� b)). For our point estimate
of b, the infection probability is 1.2%, and inserting the
95% confidence interval (CI) bounds on b into the model
gives a range of 0.10%–4.7%. This estimate of infection
probability given exposure may seem low, considering that
cadavers consist almost entirely of infectious occlusion
bodies. The average cadaver in our experiments, however,
covered 78 grid cells, and so consumption of an entire
cadaver would lead to an estimated probability of infection
of 63%. Moreover, in our experiments, individual cater-
pillars on average consumed 5,250 bites, suggesting that

infection is typically due to the cumulative effects of con-
suming thousands of virus-contaminated leaf bits.

As a test of the best-fitting model, we calculated the
infection probability for each larva by inserting the max-
imum likelihood estimates of the parameters into the best
model. In figure 2, we plot these probabilities with shading
to indicate which larvae actually became infected. As the
figure shows, individuals with higher predicted probabil-
ities of infection were indeed more likely to become in-
fected. The model thus appears to assign a realistic prob-
ability of infection to each larva.

Modeling the Probability of Exposure

We next used our data to choose between competing mod-
els of feeding behavior. As in the probability of infection
models, we focused on a small set of biologically plausible
models that were based on many hours of observations.
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Host Avoidance and Infection Risk 105

Figure 2: Predicted probability of infection for all 235 larvae in our data set, in rank order. Black bars p infected larvae; gray bars p
surviving larvae.

Methods

Model Structure. During feeding, gypsy moth larvae use
their prolegs to anchor themselves, leaving their forelegs
free to bend or steady the part of the leaf that they are
consuming. Larvae rarely chew through primary leaf veins,
and after the first instar, they typically feed shallowly along
the leaf edge (see fig. A2 for photographs of feeding dam-
age). In accordance with this behavior, larvae in our mod-
els cannot consume larger leaf veins, they begin feeding
on the leaf edge, and of course they cannot consume a
leaf grid cell more than once. After the first bite, subse-
quent bites are chosen from the eight neighbors of the last
cell consumed, which are together known as a Moore
neighborhood (Deutsch and Dormann 2005).

To test for effects of cadaver avoidance, we used our
data to choose between three different feeding algorithms.
In the first model, which we include for purposes of com-
parison, larvae follow a random walk, while in the re-
maining two models, larvae show realistic behaviors, in-
cluding limited movement while feeding and a preference
for leaf edges. The third model then additionally includes
cadaver avoidance. We therefore refer to the three models

as the random walk model, the no-avoidance model, and
the cadaver-avoidance model.

To allow for different behaviors, the models assign dif-
ferent probabilities of consumption to the grid cells neigh-
boring the last cell eaten. For example, in the random walk
model, all cells neighboring the last cell eaten have an equal
probability of being consumed. A simulated larva first
chooses a random edge cell, after which the probability Ei

of consuming neighboring cell i is

1
E p , (6)i Z

where Z is the number of uneaten neighbor cells.
In the two realistic algorithms, in contrast, each neigh-

bor cell is weighted according to the cell’s accessibility and
the extent to which it is on the edge of the leaf. Accessibility
is determined by the area that a larva can reach without
shifting its position on the leaf, which in the model is a
circle of radius r mm around current center point C.
Within this circle, the probability of consuming a given
cell i declines with increasing distance Di from C. There-
fore, we calculate the first weight w1, i as
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1
w p 1 � . (7)1, i �r D1 i1 � e

The radius r and the parameter r1 were then both fit to
the data. If there are no available cells within a distance
r of point C, the simulated larva shifts its position by
choosing, as a new center point, the nonempty cell that
is closest to the current center point C.

The second weight then allows for the extent to which
each neighbor cell is preferred based on its proximity to
the edge of a leaf, according to its number of empty neigh-
bors hi. To allow for the possibility of complex effects of
hi on feeding, we assume that this weight is a power func-
tion of hi, normalized by the values assigned to all no-
nempty neighbors:

r2hiw p . (8)2, i Z r2� hjjp1

Here Z is the total number of nonempty cells neighboring
the last cell eaten, and r2 is fit to the data.

The algorithms then combine the two weights w1, i and
w2, i into an overall probability Ei of eating neighbor cell
i:

w w1, i 2, iE p . (9)i Z� w w1, j 2, jjp1

If a simulated larva eats a cell that has no consumable
neighbors, the algorithm searches for the nearest available
nonneighbor. The larva then eats that cell, and the sim-
ulation continues.

In the cadaver-avoidance model, we also calculate the
probability of cadaver avoidance Ai:

1
A p 1 � . (10)i �gx �ki1 � e

Here xi is the Euclidean distance between cell i and the
closest cadaver cell, so that the probability of detection
declines with distance from a cadaver, as observed in
choice tests (Parker et al. 2010). If Ai is larger than a
random variate drawn from a uniform distribution be-
tween 0 and 1, then the simulated larva detects the cadaver
and instead chooses a bite that is farther from the cadaver.
If there are multiple neighbor cells that are equally far
from the cadaver, then the algorithm chooses among them
with equal probability. The parameters g and k are then
fit to the data.

For each leaf in our data set, each simulated larva eats
the same amount as the observed larva, starting at the
centermost edge cell of the observed bout. To ensure that
leaves with more bouts did not have a disproportionate
influence, we used only one bout per leaf. In each case,
we selected the bout closest to a cadaver because otherwise

there would have been little chance of detecting cadaver
avoidance. Not every larva in our experiments fed close
to a cadaver, however, and so the bouts that we used were
located at a range of distances from cadavers (fig. A5).

Choosing the Best Feeding Model. To choose between
feeding models, we again used maximum likelihood and
AIC analysis. Our ability to make inferences about the
feeding models, however, was constrained by computing
speed, as is often the case with stochastic simulations in
ecology (Hartig et al. 2011). The underlying problem is
that, for the feeding models, there is no closed-form ex-
pression describing the probability of different model out-
comes in terms of the model parameters, as there was for
the probability of infection models. Therefore, we were
forced to estimate the probability of different model out-
comes by simulating the models many times for each set
of possible parameter values.

We first attempted to carry out a pixel-by-pixel com-
parison of model leaves to data leaves using an integrated
likelihood (Berger et al. 1999). In practice, this meant
averaging likelihoods across model realizations (Ross
2002), but accurate estimation of the average turned out
to require a prohibitive number of realizations. Therefore,
we instead compared summary statistics from the model
to summary statistics from the data, and we used kernel
density estimation to interpolate a continuous probability
distribution of model outcomes from a modest number
of realizations (Hartig et al. 2011).

The two summary statistics that we used were the pe-
rimeter and the predicted probability of infection for each
feeding bout. We used the perimeter because our simulated
bouts have the same number of bites as the corresponding
real bout, and so each combination of model bout and
real bout has the same area. If two bouts also have the
same perimeter, then by elementary geometry they will
have similar shapes. We therefore expected that the perim-
eters of model feeding bouts would be informative about
the fit of the models to the data.

A bout’s perimeter, however, contains little information
about its location on a leaf, and so using the perimeter
alone resulted in model feeding bouts that were of similar
shape to the real bout but not in the same location, thus
providing a poor match to real feeding bouts. We therefore
included a second summary statistic, the predicted prob-
ability of infection for each bout, as calculated using the
best probability of infection model, equation (4). The pre-
dicted probability of infection usefully complements the
perimeter because two feeding bouts of similar shape and
location will have similar probabilities of infection,
whereas if the two bouts have similar shape but different
locations, they will likely have quite different probabilities
of infection.

In using kernel density estimation to calculate the prob-
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A B

C D

E F

Figure 3: Feeding bouts created using the three larval feeding al-
gorithms. P is the predicted probability of infection, calculated using
equation (4). Top grid, real feeding bout, followed by pairs of real-
izations for the random walk model (A, B), the no-avoidance model
(C, D), and the avoidance model (E, F). For each grid, the feeding
bout is light gray, the cadaver is black, and the leaf vein and uneaten
leaf area are gray and dark gray, respectively.

ability of each statistic, an important consideration was
that the two statistics are scaled differently, in that the
probability of infection is constrained to fall between 0
and 1, whereas the perimeter is not. If we had used a two-
dimensional kernel, this difference in scaling would likely

have required the use of a complex prewhitening routine
to avoid biased estimation (Silverman 1986). Moreover,
the number of computations needed to estimate a single
multidimensional kernel is often much higher than the
number needed to estimate one kernel for each dimension
(Silverman 1986). Therefore, we followed a standard rec-
ommendation in using a so-called product kernel, which
in our case meant using a two-dimensional kernel that is
expressed as the product of two one-dimensional kernels
(Scott 1992; Scott and Sain 2005)

In practice, this meant that for a given set of parameter
values and a given feeding bout from our data set, we first
generated 1,000 realized feeding bouts, recording the pe-
rimeter and the probability of infection for each bout. We
then used two one-dimensional kernel density estimation
routines to turn the 1,000 realized values of each statistic
into a pair of smooth probability distribution functions,
and we summed the log probability of the two statistics
to calculate an overall likelihood:

L p log (P ) � log (P ). (11)jk pm, jk pi, jk

Here Ppm, jk is the probability of the observed perimeter pm
for real feeding bout j, as calculated from model perimeters
generated with parameter set k. Similarly, Ppi, jk is the prob-
ability of the infection pi for real feeding bout j, again as
calculated from the distribution of infection probabilities
generated with parameter set k. We then maximized the
log likelihoods using a Nelder-Mead downhill simplex al-
gorithm (Press et al. 1992), and we again used AICc anal-
ysis to choose the best model.

Using a product kernel is equivalent to assuming that
perimeters and probabilities of infection are independent,
an assumption that is unlikely to be exactly correct. Pre-
liminary analyses nevertheless showed that the correlation
between the two statistics is rather weak (correlation co-
efficient r p 0.315, 95% CI p [0.195, 0.426]), as we would
expect if the two statistics are both informative about the
fit of the model to the data. It thus seemed likely that
assuming that the summary statistics are independent
would not strongly affect our conclusions.

To test this assumption in particular and our fitting
routine in general, we repeatedly fit the best model to an
artificial data set generated by inserting the best-fit pa-
rameters into the model, following standard practice
(Bolker 2008). To do this, we first generated 235 artificial
feeding bouts, the same number as in the original data
set, using the maximum likelihood estimates of the pa-
rameters. We then fit the model to this artificial data set
300 times. The mean for each parameter was quite close
to the value used to generate the artificial data set (table
A4). Therefore, we are reasonably confident that our fitting
routines are not biased and that the weak correlation be-
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Table 2: Corrected Akaike information criterion (AICc) scores, maximum likelihood estimates, and bootstrapped 95%
confidence intervals (CIs) for our feeding algorithms

Model AICc DAICc AICc weight Parameters 95% CI

Cadaver avoidance (eqq. [7]–[10]) 2,865.70 .0 1.0 r1 p 1.16 mm�1,
r p .21 cm,
r2 p 15.27,
g p 20.03 mm�1,
k p 16.22

(.76, 1.74),
(.13, .31),
(11.84, 18.18),
(12.05, 32.72),
(6.62, 33.20)

No avoidance (eqq. [7]–[9]) 3,115.74 Median: 88.9,
range: 15.8–250

.0 r1 p 1.01 mm�1,
r p .23 cm,
r2 p 12.53

(.56, 2.22),
(.11, .40),
(9.45, 19.85)

Note: The parameters r1 and r describe the localized feeding of larvae, r2 determines the extent to which larvae prefer grid cells that are on the

edge of a leaf, and g and k are cadaver-avoidance parameters. Note that the AICc weights for the model without avoidance are very close to zero

for the entire range of AICc scores.

tween perimeters and probabilities of infection had little
effect on our conclusions.

A final point is that our likelihood calculations were
dependent on our estimates of the parameters a, b, and
q of the probability of infection model, equation (4), and
these estimates, of course, have associated uncertainties.
To take these uncertainties into account, we used the 300
bootstrapped parameter values that we had earlier used to
create confidence intervals for each parameter of the feed-
ing models by repeating our maximum likelihood calcu-
lation for each of the 300 bootstrapped sets of a, b, and
q. We therefore report both the median and the range of
the AICc across these 300 parameter sets, as well as the
range of AICc differences. The resulting model selection
procedure is somewhat informal, but the cadaver-avoid-
ance model fit the data so much better than the no-avoid-
ance model that we believe that our conclusions are robust.
Nevertheless, the 95% confidence intervals on the param-
eter estimates of the feeding models were calculated across
the 300 sets of values of a, b, and q, a procedure that is
sufficiently informal that the confidence intervals may not
reflect the true uncertainty in the parameters.

Results

Because our feeding models are stochastic, we do not ex-
pect them to exactly reproduce the original feeding bouts.
Nevertheless, each of the two realistic models produces
bouts that are similar to the original bouts (fig. 3; all 235
bouts are shown in figs. A6–A8). Because the random walk
algorithm provides a very poor fit to the data, we do not
consider it in model selection.

Moreover, as figure 3 emphasizes, the model with ca-
daver avoidance provides a much better fit to the data
than does the model without avoidance, such that the
median AICc difference is 88.9 and the range of AICc
differences is 15.8–250.0 (table 2; also, table A2 shows that
the BIC scores were again virtually identical). Given that

AICc differences larger than 7 indicate that there is over-
whelming evidence for the best model (Burnham and An-
derson 2002), the model with cadaver avoidance clearly
provides a better explanation of the data for all 300 sets
of the probability of infection parameters a, b, and q. We
also note that the maximum likelihood estimates for the
three parameters shared by the two realistic algorithms, r,
r1, and r2, are not significantly different between the two
models, which supports our argument that the better fit
of the cadaver-avoidance model is not simply due to that
model having more parameters. Our experimental data
thus allow us to clearly distinguish between the two mod-
els. We therefore conclude that our data provide very
strong evidence that cadaver avoidance alters the feeding
behavior of gypsy moth larvae.

Figure 4 then shows that the cadaver-avoidance model
predicts a sharp decline in detection probability beginning
at about 0.7 mm from a cadaver. The probability that a
larva detects a cadaver is thus low until the larva is close
to the cadaver. As we will show, however, this short detection
distance is sufficient to substantially lower infection risk.

Testing the Model Predictions

Methods

The final step in our research was to combine our feeding
models with our probability of infection models and to
use the combined models to make predictions of infection
risk, thereby testing whether cadaver avoidance does in
fact reduce a larva’s infection risk. Ultimately, we hope to
also understand the effects of cadaver avoidance on epi-
zootics and gypsy moth outbreaks, but as a first step we
consider only a single round of transmission. Moreover,
allowing for only a single round of transmission allowed
us to compare model predictions to data from field ex-
periments that similarly allowed for only a single round
of transmission (Elderd et al. 2008). In the field experi-
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Figure 4: Detection probability versus distance from a cadaver, as calculated by the detection model, equation (10), using the maximum
likelihood estimates for the parameters g and k.

ments, 25 uninfected fourth instars were allowed to feed
for a week on 40-leaf branches, which were contaminated
with a known density of infected first-instar larvae. The
infection rate was measured as the fraction of larvae that
became infected on each branch. Comparing the model
predictions to the data then required that we scale up our
feeding models to allow for multiple leaves and multiple
larvae (appendix).

Results

Comparing the models to the field data shows that the
cadaver-avoidance model has , while the no-2r p 0.51
avoidance model has , and the random walk2r p 0.48
model has (fig. 5). The models thus explain a2r p 0.39
reasonably high fraction of the variance in the field data,
especially given that they are making a priori predictions.
We therefore conclude that our models and experiments
together provide a realistic description of the effects of
gypsy moth larval feeding behavior on virus infection risk.

Part of the reason why the models do not fit the field
data better is that the curvature of the function relating
infection risk to virus density is strongly affected by innate
variation in infection risk between individuals (Dwyer et
al. 1997). We did not include such variation in our models
first because estimating its effects would have made our
fitting routines prohibitively slow. Moreover, it is more

biologically illuminating to compare models that differed
only in feeding behavior rather than in variability across
individuals. This is because changes in the curvature of
the infection risk function have previously been attributed
to variability between individuals that is due either to ge-
netic differences between larvae (Elderd et al. 2008) or
induced changes in hydrolyzable tannins (Elderd et al.
2013). Figure 5 in contrast shows that changes in feeding
behavior alone can also affect the curvature of the func-
tion, and comparisons between feeding models shows that
this curvature is affected by multiple aspects of feeding.
First, the no-avoidance model reduces the rate at which
the infection rate increases with increasing virus density
relative to the random walk model, showing that a pref-
erence for edges and nearby leaf tissue can alter the cur-
vature of the infection rate function. Second, the cadaver-
avoidance model similarly reduces the rate at which the
infection rate increases with increasing virus density, show-
ing that cadaver avoidance likewise alters the curvature of
the infection rate function. These effects most likely occur
because larvae vary in their proximity to a cadaver, just
as they may vary due to differing genetic backgrounds or
to changes in hydrolyzable tannin levels.

Given that our overall goal was to test whether cadaver
avoidance affects infection risk, the most important feature
of figure 5 is that the cadaver-avoidance model predicts
lower infection rates than either the random walk model
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Figure 5: Predicted fraction infected for each feeding model (lines with points indicate the median and the 95th percentile range) versus
the data (points with bars indicate 50th percentile ranges).

or the no-avoidance model, implying that cadaver avoid-
ance does indeed reduce infection risk. Relative to the no-
avoidance model, the cadaver-avoidance model reduces
infection rates by about 4% across virus densities and by
roughly 7% at the highest virus density. Although these
differences may seem modest, they were calculated over
only a single round of transmission, whereas naturally oc-
curring epizootics typically have multiple rounds of trans-
mission (Woods and Elkinton 1987). Scaling the realistic
models up to allow for entire epizootics confirmed that
avoidance behavior also has strong effects on epizootics
(Eakin 2012), as we will detail in a future publication. We
therefore conclude that cadaver avoidance substantially re-
duces the risk that a gypsy moth larva will become infected
with the gypsy moth baculovirus.

Discussion

To our knowledge, our work provides the first demon-
stration that cadaver avoidance alters an insect’s risk of
infection with a baculovirus (but see Vasconcelos et al.
1996) for differences in movement rates between healthy

and infected larvae of the cabbage moth Mamestra bras-
sicae). Our work also shows that spatial structure at the
scale of millimeters affects the transmission of this virus,
which is a smaller scale than has previously been reported
for baculoviruses of this or other insects (Dwyer 1991;
Vasconcelos et al. 1996; D’Amico et al. 2005). More
broadly, our work provides one of the most direct quan-
tifications to date of the effect of a host’s behavior on its
risk of pathogen infection. Our estimate is nevertheless
somewhat indirect because it is based on a difference in
model predictions, but in contrast to previous studies, our
use of model predictions meant that we did not have to
eliminate avoidance behavior to demonstrate that avoid-
ance behavior affects risk (Kendall et al. 1999; Behringer
et al. 2006). Moreover, combining models and experiments
allowed us to understand how individual behaviors are
translated into infection risk.

For insect-baculovirus interactions, efforts to under-
stand transmission typically use dose-response experi-
ments, in which larvae that do not consume the entire
dose are discarded, so that there is again no effect of feed-
ing behavior (Cory and Myers 2003). Partly as a result,
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dose-response experiments cannot always be used to pre-
dict infection rates in the field (Dwyer et al. 2005). Field
experiments, in contrast, can be used to predict infection
rates in nature (Dwyer et al. 1997) but do not allow for
a mechanistic understanding of transmission. Our exper-
iments thus provide a deeper mechanistic understanding
of baculovirus transmission than either dose-response or
field experiments, and we therefore argue that future re-
search on baculovirus transmission should similarly con-
sider the probability of exposure. Moreover, given that
baculovirus biology is quite similar across insect hosts,
models similar to ours may be useful for understanding
transmission in other insect-baculovirus interactions.

Because cadaver avoidance is heritable in choice tests
(Parker et al. 2010), it seems likely that it is also heritable
when larvae are allowed to feed more naturally, as in our
experiments. Moreover, because previous work has shown
that natural selection on overall infection risk helps drive
gypsy moth outbreaks (Elderd et al. 2008), we suspect that
selection on cadaver avoidance affects outbreaks. The lev-
els of cadaver avoidance shown by gypsy moth larvae,
however, likely reflect a trade-off between avoidance and
feeding rates, because lower avoidance rates may permit
more continuous feeding and, thus, higher fecundity
(Hough and Pimentel 1978). As evidence in support of
this argument, we note that we observed no difference in
feeding rates on contaminated and uncontaminated leaves
and that our best model predicts that a larva will only
avoid a cadaver if the cadaver is only a few millimeters
away. These results together suggest that there is strong
selection for larvae to not interrupt their feeding until they
are very close to cadavers. Our models further suggest that
infection does not occur unless a larva consumes many
contaminated bits of leaf, and so physiological resistance
may allow larvae to feed very close to cadavers without
becoming infected.

Thus, one of the implications of our work is that in-
fection is affected by spatial variability both in exposure
risk and in infection risk given exposure. This is important,
partly because it seems likely that cadaver avoidance and
physiological resistance are determined by different genes
and therefore may evolve independently. Additionally,
when baculoviruses are sprayed as insecticides (Moreau
and Lucarotti 2007), the virus is distributed more or less
uniformly over the foliage (Webb et al. 1990), whereas in
natural epizootics, cadavers occur as dense clumps of oc-
clusion bodies. Shortly after a spray application, it may
therefore be very difficult for larvae to avoid the virus,
and so spray applications may impose a different selection
pressure than natural epizootics.

Our work suggests that stochastic simulation models
can usefully complement ordinary differential equation
models in disease ecology. While partial differential equa-

tion models can similarly be useful for studying the eco-
logical consequences of behavior (Kareiva and Odell 1987),
in our case it would have been very difficult to write down
a realistic partial differential equation model. In partial
differential equation models of behavior, animal density
changes either because of births and deaths or because of
dispersal between locations (Murray 1989). In baculovirus
transmission, in contrast, larvae consume the leaves on
which they are moving, and so the density of larvae and
cadavers changes because the landscape is effectively
shrinking. Allowing for such a process would be very dif-
ficult in a partial differential equation, but it is straight-
forward in a computer algorithm. Our work, therefore,
adds to the growing consensus that stochastic simulation
models have a useful role to play in disease ecology (Lon-
gini et al. 2005).
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