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Abstract

Phenotypic variation is common in most pathogens, yet the mechanisms that maintain this diver-
sity are still poorly understood. We asked whether continuous host variation in susceptibility helps
maintain phenotypic variation, using experiments conducted with a baculovirus that infects gypsy
moth (Lymantria dispar) larvae. We found that an empirically observed tradeoff between mean
transmission rate and variation in transmission, which results from host heterogeneity, promotes
long-term coexistence of two pathogen types in simulations of a population model. This tradeoff
introduces an alternative strategy for the pathogen: a low-transmission, low-variability type can
coexist with the high-transmission type favoured by classical non-heterogeneity models. In addi-
tion, this tradeoff can help explain the extensive phenotypic variation we observed in field-col-
lected pathogen isolates, in traits affecting virus fitness including transmission and environmental
persistence. Similar heterogeneity tradeoffs might be a general mechanism promoting phenotypic
variation in any pathogen for which hosts vary continuously in susceptibility.
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INTRODUCTION

Phenotypic variation within a pathogen species is very com-
mon in nature, with multiple pathogen strains existing within
a population or even a single host (Hodgson et al. 2001; Ped-
ersen & Fenton 2007; Rigaud et al. 2010). This variation can
affect the population dynamics of hosts and pathogens
(Gupta et al. 1994), the emergence of new diseases (Musser
1996) and the evolution of increased virulence in existing dis-
eases (Musser 1996; Alizon et al. 2013).
Phenotypic variation in a pathogen can arise from neutral

evolutionary processes or alternatively through processes
involving selection. The tradeoff theory of the evolution of
virulence proposes that pathogen traits with opposite effects
on fitness (often transmission and removal rates) are likely to
be positively correlated, leading to a peak in fitness at inter-
mediate virulence (Levin & Pimentel 1981; Anderson & May
1982). If tradeoffs are present, strains collected from geo-
graphically distinct populations can have the same fitness even
though they differ in measured traits (de Roode et al. 2008;
Chapuis et al. 2012). This is similar to community ecology
theory, where the ability to use different resources can lead to
the coexistence of competing species (Tilman 1977). However,
classical tradeoff theory does not allow for multiple pathogen
strains in a single host population. Classical pathogen compe-
tition models, assuming a homogeneous host population, pre-
dict that the strain which is able to invade at a lower host

population size should always competitively exclude the other
(Bremermann & Thieme 1989; Keeling & Rohani 2008). In
this study, we extend tradeoff theory to develop a mechanism
by which host heterogeneity in the form of continuous or
quantitative resistance promotes phenotypic variation in a
pathogen.
Host heterogeneity in susceptibility can lead to pathogen

polymorphism if fitness of different pathogen types varies
across different hosts (Regoes et al. 2000; Kirchner & Roy
2002; Osnas & Dobson 2012). If hosts vary continuously in
their susceptibility to a pathogen, transmission rate will drop
during an epidemic as the more susceptible individuals are
removed first. This decrease in instantaneous transmission is
affected by a trait we call ‘variation in transmission’. Different
host populations might have different values of variation in
transmission if they are more or less variable in susceptibility.
Less intuitively, different values of variation in transmission
might also be observed for different pathogens in a single host
population. This would occur if a host population varied in
its susceptibility to one pathogen, but had a more consistent
response to a second pathogen. In a pathogen with low varia-
tion in transmission, instantaneous transmission decreases
more slowly (and thus is less variable); with high variation in
transmission, it changes more rapidly. Variation in transmis-
sion therefore has both the potential to vary among pathogens
as well as a strong effect on infection rate and thus pathogen
fitness. In this study, we consider variation in transmission as
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a trait that might vary among different pathogen types and be
subject to tradeoffs.
Transmission models that allow for continuous host varia-

tion in susceptibility predict that changes in the level of host
variation can alter the curvature of the infection rate
response when plotted against pathogen density (Figs 1 and
S1). We have repeatedly confirmed this prediction in the
gypsy moth baculovirus system, observing this host hetero-
geneity effect in field experiments comparing high- and low-
variability host strains (Dwyer et al. 1997) or half-sibling
families (Elderd et al. 2008). In contrast, small-scale spatial
structure and insect feeding behaviour appear to only weakly
influence the curvature in these plots (Eakin et al. 2015). A
more gradual increase in infection rate with pathogen density
is consistent with high variation in host susceptibility: highly
susceptible individuals can be infected even at very low
pathogen densities (causing a sharp initial increase in infec-
tions), while the last individuals left uninfected in the popu-
lation will likely be highly resistant, thus causing infection
rates to slow their increase at the highest pathogen densities.
The observed heterogeneity can be incorporated into host-
pathogen population models as the coefficient of variation
(CV = SD/mean) of transmission rate (Dwyer et al. 1997,
2000), a unitless quantity that accounts for the tendency of
variance to increase with the mean. This term also determi-
nes how quickly transmission will decrease during an epi-
demic, and is thus the ‘variation in transmission’ mentioned
above. Note that the curvature of the infection plots also

depends on the pathogen isolate identity (Fig. 1), consistent
with the idea that variation in transmission can be treated as
a pathogen trait.
We present evidence that host heterogeneity helps maintain

pathogen diversity in a baculovirus that infects gypsy moth
(Lymantria dispar) larvae. Field-collected pathogen isolates
were found to differ in how much their transmission varies
over time during an outbreak, which results from host hetero-
geneity. A tradeoff between mean transmission rate and
variation in transmission promotes pathogen polymorphism
by introducing two alternative strategies for the pathogen: a
low-mean-transmission, low-variability pathogen can coexist
with a high-mean-transmission, high-variability pathogen.
Simulations of a population model incorporating this empiri-
cally observed tradeoff predict long-term coexistence of two
pathogen types, and thus help to explain the extensive
phenotypic variation we found in 16 field-collected pathogen
isolates.

MATERIALS AND METHODS

To ask whether a tradeoff between mean transmission rate
and variation in transmission could promote pathogen coexis-
tence, we first estimated parameters for 16 field-collected virus
isolates using field and laboratory data. Next, we fit linear
and nonlinear models to look for tradeoffs between those
parameters, using each isolate as a separate data point. We
then incorporated the estimated tradeoffs into a two-pathogen
differential equation model, and used numerical simulations
of this model to ask under what conditions pathogen coexis-
tence is predicted.
The host-pathogen population model was parameterised

from empirical data collected in this study. These data come
primarily from two sources: a laboratory experiment to esti-
mate speed of kill, and a field experiment to estimate mean
transmission rates, variation in transmission (heterogeneity)
and environmental decay rates. In the following sections, we
first present the study system and the population model, and
then describe the data collection, statistical analysis and model
fitting. See Table 1 for data sources of all model parameters.

Study system

We used the baculovirus that infects gypsy moth (Lymantria
dispar) caterpillars as our experimental system. Baculovirus
outbreaks begin when gypsy moth larvae hatch in the spring
and consume contaminated egg material. Infected neonates
die on leaves of host trees, contaminating leaf material that is
consumed by later-instar larvae (Woods & Elkinton 1987).
Transmission occurs only after death of the infected larva,
when the host cuticle dissolves and infectious particles (occlu-
sion bodies) are released onto leaves (Miller 1997). The bac-
ulovirus is unable to infect adults or pupae, and gypsy moths
have only one generation per year. Thus hosts are only avail-
able from approximately early May until mid-August, when
larvae pupate. The virus overwinters on tree bark, sheltered
by gypsy moth egg masses, and a new epizootic begins the fol-
lowing spring when the next generation hatches (Woods &
Elkinton 1987).
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Figure 1 Data from field experiments, showing the mean fraction infected

for a virus isolate with high variation in transmission (i.e. high

heterogeneity; red) and an isolate with low variation in transmission

(blue). These two isolates were chosen from the 16 experimental isolates

to represent the range of values observed for the coefficient of variation

(CV) of transmission. Pathogen density (x axis) was experimentally

manipulated, and data shown are from the ‘no environmental decay’

treatment. Points are mean� 1 SE fraction larvae infected among

experimental replicates (n = 14 replicates, 354 larvae for isolate 1 (red);

n = 15 replicates, 329 larvae for isolate 2 (blue)). Lines show fitted model

predictions for a single pathogen model, with mean transmission
�m ¼ 5:59 and variation in transmission C = 2.08 for isolate 1 (red), and
�m ¼ 0:86 and C = 0.6 for isolate 2 (blue).
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Population model

Our two-pathogen model is an extension of an earlier single-
pathogen model (Dwyer et al. 1997, 2000), which has been
extensively tested and found to accurately predict natural out-
breaks of gypsy moth and its baculovirus (Dwyer et al. 2004).
We model the within-season transmission with the following
differential equations adapted from a Susceptible-Exposed-In-
fected-Removed (SEIR) model:

dS

dt
¼ �P1m1S� P2m2S; ð1Þ

dm1
dt

¼ �P1m1
2C1

2 � P2qC1C2m1m2; ð2Þ

dE1;1

dt
¼ P1m1S� k1d1E1;1; ð3Þ

dEi;1

dt
¼ k1d1Ei�1;1 � k1d1Ei;1; i ¼ 2; . . .k1; ð4Þ

dP1

dt
¼ k1d1Ek1;1 � l1P1: ð5Þ

We show here equations for the first isolate from a two-
pathogen model (see eqns A36–A44, Appendix A, for the
complete model and its derivation). Uninfected hosts (S) vary
continuously in their susceptibilities. This variation (described
by Cj, the coefficient of variation of transmission) causes the
instantaneous transmission rate of pathogen j, m(t)j,j = 1,2, to
drop throughout the epizootic as the more susceptible individ-
uals are removed (Fig. 2, eqn 2). When the instantaneous
transmission rate mj(t) is large,

dmj
dt declines more steeply, as can

be seen by taking the partial derivative of eqn 2 with respect
to mj(t). This occurs because with large mj(t) hosts are infected
and thus removed from the susceptible population more
quickly, causing a more rapid decrease. The mean transmis-
sion rate �mj estimated for individual isolates is the population
mean for an uninfected population, and thus �mj ¼ mjð0Þ.
Increasing Cj, the variation among hosts in their susceptibil-

ities to pathogen j, also causes the transmission rate to drop
off more steeply ( @

@C of eqn 2), because individuals removed at
the beginning of the epizootic are much more susceptible than

Table 1 Model parameters and data sources for estimates. All isolate-specific parameters were fit using experimental field and laboratory data collected in

this study, and the empirically observed range among isolates is given. Estimates of pathogen overwintering and host population growth rates were taken

from previous studies of this system. For simplicity, overwintering rate / is assumed to be the same for both virus isolates in the two-pathogen model. This

is also the conservative case, in which two-pathogen coexistence is least likely to occur. The correlation of transmission between virus isolates, calculated as

the Pearson’s correlation coefficient q, was varied over its full range

Parameter Description Value/range Source of estimate(s)

�m Mean transmission rate1 0.86–10.15 Field experiment

C CV of transmission rate1 0.6–2.21 Field experiment

l Pathogen within-season decay rate1 0.24–1.03 Field experiment

d Transition between exposed classes1 0.057–0.069 Speed of kill lab experiment

k Number of exposed classes1 22–35 Speed of kill lab experiment

q Correlation of transmission between isolates �1 to 1 Full range considered

/ Pathogen overwintering rate 4 Murray & Elkinton 1989,Dwyer et al. 2000

kN Host annual growth rate 10 Dwyer et al. 2000

1Varies by isolate; parameter estimates fit for each isolate separately.
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Figure 2 In numerical simulations, a pathogen with both high mean

transmission and high variation of transmission (red line) infects more

individuals at the beginning of the epizootic, but fewer individuals later

(a), compared to a low-transmission, less-variable isolate (blue line). We

plot the density of the first exposed class infected with each isolate ((a),

E1, see eqn 3). The between-isolate difference in the density of exposed

hosts is due to the decrease of mean transmission over the course of the

epizootic (b) as the more susceptible individuals are infected first and thus

removed from the population. This decrease is slower for a low-variation

isolate (blue line (b), �m ¼ 0:86, C = 0.6) compared to a high-variation

isolate that starts at a higher mean transmission (red line (b), �m ¼ 8:38,

C = 2.21). Time is plotted over only the first 10 days of the epizootic to

show the initial wave of infection.
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those removed later (Fig. 2). In the case of homogeneous
hosts, Cj = 0 and transmission rate does not change (eqn 2
becomes zero). Lower variation of transmission C gives a
higher fraction of individuals infected within a season (eqn 9,
see also Appendix B) and therefore lower values of C are
favourable for the pathogen. In general, lower variation of
transmission is associated with more rapid spread of infection
(Hethcote & VanArk 1987; Diekmann et al. 1990) and lower
extinction risk (Lloyd-Smith et al. 2005).
Because both pathogens remove hosts from the same vari-

able population, instantaneous transmission for one pathogen
depends on the density of the other, according to q, the
between-isolate Pearson’s correlation in their transmission. A
positive value of q indicates that individuals highly susceptible
to pathogen 1 are also more susceptible to pathogen 2. q is
thus a measure of host-pathogen specificity, with negative val-
ues indicating specialisation. We varied the correlation of
transmission q over its full range (�1 to 1), but present results
for q = 1, as this is the case in which coexistence is least likely
(i.e. no host-pathogen specialisation). If q < 0, the instanta-
neous transmission rate dm1

dt (eqn 2) can actually increase over
the course of the epizootic: removal of hosts susceptible to
pathogen 2 will increase the mean susceptibility of the popula-
tion to pathogen 1, because those individuals removed by
pathogen 2 had low susceptibility to pathogen 1. However,
note that even if the instantaneous transmission rate m1
increases, the total transmission term P1m1S must still eventu-
ally decrease as susceptible hosts are removed, and can even
decrease while the instantaneous transmission rate increases.
The delay between consumption of virus and transmission

after death is modeled with a series of k exposed (E) classes,
with individuals moving from class to class at rate kd, and k
and d describing a gamma distribution of kill times. Infectious
particles are only produced if the host dies (Miller 1997), and
therefore we model only those infections that lead to death,
and all individuals entering the E1 class progress to the patho-
gen (P) class. Pathogen decays on foliage at rate l. Unlike the
classic Anderson & May (1981) insect-virus model, where
pathogen density decreases through contact with susceptible
hosts, there is evidence that this assumption is incorrect for
this system (Appendix D), most likely because larvae consume
uncontaminated foliage at a higher rate than contaminated
foliage (Eakin et al. 2015). Adding pathogen removal through
consumption produces similar qualitative results in model sim-
ulations (Appendix D).
Gypsy moths have one generation per year (Hunter 1991),

and the baculovirus infects only the larval stage. We model
populations over longer time scales by adding a discrete time
annual model that incorporates host reproduction and patho-
gen overwintering, and projects the populations from the
onset of one season to the onset of the next season:

Nnþ1 ¼ kNNnð1� I1 � I2Þ; ð6Þ
Z1;nþ1 ¼ /NnI1; ð7Þ
Z2;nþ1 ¼ /NnI2: ð8Þ
At the end of the season, surviving hosts Nn(1�I1�I2)

reproduce at rate kN, to give the host population the follow-
ing year, Nn+1. The fraction surviving is given by 1 � I1 � I2,

where I1 is the fraction of larvae infected with pathogen 1,
and I2 the fraction with pathogen 2. Pathogen j, (Zj), is
produced at rate NnIj and overwinters on host egg masses at
rate /.
Following standard practices, we assume that host evolution

is slower than pathogen evolution, and therefore do not
model host evolution. Assuming no coevolution and a single
overwintering rate for both isolates is also the most conserva-
tive case, in which pathogen polymorphism is least likely. For
simplicity, coinfections are not modelled. Although a moder-
ate rate of coinfection has been observed in this system (Ken-
nedy 2012), adding coinfections tends to increase the
likelihood of coexistence (May & Nowak 1995), and thus
excluding coinfections is also conservative.

Field experiment

We used controlled epizootic experiments in the field to esti-
mate population model parameters for 16 field-collected virus
isolates, including mean transmission rates, variation in trans-
mission, and environmental decay rates. Experiments were
conducted with each of the 16 virus isolates separately, and
isolate-specific parameters were estimated for each isolate in
isolation. See ‘Collection of virus isolates’ in Supporting
Information for more details on isolate collection.
Our experimental design replicates the natural infection pro-

cess; outbreak data from naturally occurring populations indi-
cate that transmission peaks in the field when infected
neonates infect larger 3rd and 4th instar larvae (Woods &
Elkinton 1987). First instar larvae (neonates) were infected in
the lab with each of the virus isolates and then allowed to die
in the field on red oak branches with 40 leaves contained in
Reemay fabric bags. Viral decay within these bags is close to
zero (Fuller et al. 2012). In order to estimate environmental
decay rates, we varied the length of time for which cadavers
were exposed to the environment, by removing bags for 3, 1,
or 0 days. Three densities of infectious cadavers were used:
10, 25 and 50 cadavers/branch. First instar cadavers contain
approximately 1.5 9 107 infectious particles (data from
necropsies). Cadaver size and thus number of infectious parti-
cles varies to some extent within and among virus isolates,
and this variation is captured by the isolate-specific mean
transmission and variation in transmission parameters. After
death of the infected first instar larvae, branches were exposed
to the environment according to their exposure treatment, and
then 25 healthy lab-raised 4th instar larvae were added to
each bag. Infection occurs when susceptible larvae consume
leaf material that has been contaminated with virus-killed
cadavers. Healthy larvae were allowed to feed for one week,
and then raised in the laboratory in individual cups of artifi-
cial diet in order to determine infection status. Infected larvae
display a typical ‘melted’ phenotype, due to dissolution of the
cuticle (Miller 1997). Infection state was determined by visual
inspection and confirmed with necropsies under a light micro-
scope at 4009 magnification. Virus particles are contained in
large protein-coated occlusion bodies that are visible at 4009
(Miller 1997).
It is crucial to conduct these experiments in the field,

because virus decay and variation in transmission both
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depend on environmental conditions that cannot be accurately
replicated in the lab (Fuller et al. 2012). Variation in transmis-
sion is also affected by larval feeding behaviour and the distri-
bution of virus-killed cadavers on leaves (Eakin et al. 2015),
and our field experiments allow for these processes. In July
2011, we used two densities of infectious cadavers (25 and 50
cadavers/branch) crossed with three exposure treatments,
replicated three times. In June 2012, we repeated the experi-
ment with a single exposure treatment (0 days exposed) and
all three densities of infectious cadavers, replicated three
times. This gave a total of 10 800 susceptible larvae over both
years. All field experiments were conducted at MSU’s Kellogg
Biological Station, Hickory Corners, MI, USA (Fig. S2).
All gypsy moth larvae used in the field and laboratory

experiments were the New Jersey Standard Strain, from the
USDA-APHIS colony at Otis Air Force Base, Buzzard Bay,
MA, USA. These larvae have been bred in the laboratory for
over 40 generations, but are not a clonal or inbred line. Lar-
vae from different egg masses (full-sib families) were com-
bined and randomised before assignment to different
treatments, to ensure that a mix of genetic families was used.
Egg masses were surface sterilised by soaking in a 4%
formaldehyde solution for 90 minutes to prevent infection
upon hatching in case of contamination (Dwyer et al. 1997).
To control for any effects of artificial diet, body size or devel-
opmental stage on infection risk, larvae used in experiments
were selected just prior to molting to 4th instar at the point
when the head capsule had slipped forward, and starved for
24 h during molting (Grove & Hoover 2007).

Speed of kill laboratory experiment

To estimate the distribution of kill times and size of larvae at
death, we infected 100 recently molted 4th instar larvae per
isolate with a dose of virus intended to kill 95% of individu-
als. Each individual was fed a dose of 6750 occlusion bodies
in 3 lL of solution placed on a small cube of artificial diet
(3 mm3). Larvae were given 24 h to consume the infected
cubes, and those that did not ingest the entire dose were dis-
carded. They were then raised separately in cups of artificial
diet at 22 ∘C (mean daily temperature in June at the site of
field experiments) and checked daily after infection until all
had died or pupated. To estimate size at death, we took pho-
tographs of larvae at infection and after death, and estimated
larval area (mm2) using the software ImageJ.

Model fitting

Field experiments were conducted using a single pathogen iso-
late at a time. Therefore, it was possible to use an existing sin-
gle-pathogen model with host heterogeneity (Appendix A,
eqns A8–A11) to predict the fraction of individuals infected i
at the end of an epizootic of known length and pathogen den-
sity in which only one round of transmission occurs (Dwyer
et al. 2000; Fuller et al. 2012):

i ¼ 1� ð1þ C2�me�lTP0 t̂Þ�
1

C2 ð9Þ
As in the population model (eqns 1–5), �m and C are the mean

and coefficient of variation of transmission rate, and l is the

environmental decay rate. The remaining parameters were set
by the experimental design. P0 is the initial virus density, which
is approximately constant over time in experimental bags
(Fuller et al. 2012). Bags were removed to expose virus-killed
cadavers to the environment for T days, and thus pathogen
density after decay is given by P0exp(�lT). Healthy larvae were
allowed to feed on contaminated leaf material for t̂ ¼ 7 days.
Previous work using this method of controlled epizootic

experiments has shown that data from these field experiments
are not variance-inflated (Dwyer et al. 2005; Elderd et al.
2008) and thus a binomial likelihood is appropriate. We used
Bayesian MCMC methods to fit model parameters to data
(see Supporting Information for details) and to compare pena-
lised goodness of fit of two sets of model types: (1) models
with host heterogeneity described by variation in transmission
(eqn 9) vs. models with linear transmission and no hetero-
geneity (eqn B8, Appendix B) and (2) models with isolate-
specific parameters vs. models in which some or all parame-
ters are the same for all virus isolates (see Table S1 in Sup-
porting Information for a complete list of models considered).
The expected distribution of kill times (described by k and d

in the population model, eqns 3–5) was fit separately from the
other model parameters, using the mean and variance of time
of death from the laboratory experiment and assuming a
gamma distribution of death times. It is not possible to use
the field data to fit these parameters, as ingestion of virus
could occur at any time within a one-week window and thus
exact time of infection is not known.

Tradeoff analysis

After fitting the model and obtaining the posterior distribution
of all parameters, we looked for tradeoffs between different
model parameters affecting pathogen fitness. To do so, we fit
linear and nonlinear regression models using each isolate as a
separate data point. We compared linear models regressing
environmental decay l and the coefficient of variation of trans-
mission C against mean transmission �m to nonlinear models of
the form y = kxa traditionally used in tradeoff theory, where x
is typically transmission and y is typically host mortality or
pathogen decay (Anderson & May 1982; Keeling & Rohani
2008). For the regression of variation in transmission C against
mean transmission �m we also fit a nonlinear logistic function of
the form C ¼ a=ðb þ expð�d�mÞÞ. This function takes only pos-
itive values and is thus appropriate for the CV, which has a
lower limit of zero. Both independent and dependent variables
in all tradeoff regressions were parameter estimates fit to data
and thus contain error. To account for this error, we propa-
gated the posterior parameter distributions into the tradeoff
regression models. We used Monte Carlo sampling of the poste-
rior distributions and resampled the posteriors of each parame-
ters 10 000 times, refitting the regression model each time. This
produced 95% credible intervals around the regression lines
that account for the error in both dependent (C or l) and inde-
pendent (�m) variables.
Positive correlations between these model parameters are

consistent with the presence of tradeoffs between them. Lower
environmental decay rates are associated with increased
pathogen fitness, and thus increasing decay rate with increas-
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ing mean transmission would indicate a tradeoff. Likewise,
lower variation of transmission C is advantageous to a patho-
gen; lower values of C give a higher fraction of individuals
infected in a season (see Population Model above).

Estimating pathogen fitness

In the case of a heterogeneous population in which hosts vary
continuously in their susceptibilities, the basic reproductive
ratio R0 is not the most informative measure of pathogen fit-
ness (Diekmann et al. 1990; Dieckmann 2002). We therefore
used two other more appropriate measures of pathogen fit-
ness: (1) initial annual population growth rate kZ of a patho-
gen invading a mostly susceptible host population and (2)
invasion success of a new mutant into a population with a
resident pathogen, an adaptive dynamics approach using pair-
wise invasibility plots (Geritz et al. 1997). We found qualita-
tively similar results from both measures.
Like R0, population growth rates assume the introduction

of a pathogen at very low density into a mostly susceptible
population (Diekmann et al. 1990). As our first measure of
fitness, we used the initial pathogen annual growth rate kZ of
an invading pathogen into a susceptible population (see
Appendix B):

kZ ¼ /NnIðNn;ZnÞ
Zn

ð10Þ

The growth rate depends on the host density in the previous
year, Nn, and thus we estimated the annual growth rate at
several different host densities. It also depends on the patho-
gen overwinter persistence, /, and the fraction infected I(Nn,
Zn), which can be found by solving the epizootic burnout
approximation equation (Appendix B).
The second measure of pathogen fitness was the invasion suc-

cess of a new mutant into a population with a resident pathogen
present at equilibrium densities (Geritz et al. 1997). In the gypsy
moth-baculovirus system, transmission depends on the densities
of both host and pathogen populations, and the optimal trans-
mission rate (that which maximises pathogen growth rate) var-
ies with host density. When transmission rates depend on host
density, adaptive dynamics that can take into account density-
dependent behaviour are a more appropriate analysis (Dieck-
mann 2002). Simulations to estimate success of an invading
pathogen were also used to determine regions of two-pathogen
coexistence in pairwise invasibility plots (Appendix B).
Overall invasion success of a new mutant of a given mean

transmission rate was computed by summing the cases in
which the invader was able to persist over the range of
resident mean transmission values, then dividing by the total
number of resident mean transmission values tested, to give a
proportion between 0 and 1 that we call ‘invasion success’.

RESULTS

Field-collected virus isolates showed a high level of polymor-
phism in field experiments (Fig. 3), and the best-fitting model
had isolate-specific parameters for mean transmission rates,
variation (CV) of transmission, and environmental decay
(Table S1). Isolates also varied in their speed of kill in labora-

tory experiments (Fig. S5, parametric survival regression with
Weibull distribution, W = 87.3, d.f. = 15, P < 0.001).
Mean transmission rates correlated positively with environ-

mental decay, consistent with a tradeoff between these traits
(Fig. 3a). However, this tradeoff alone is insufficient to
explain coexistence of multiple isolates (Table 2). A second
tradeoff between mean transmission and variation in transmis-
sion (Fig. 3b) is more important in allowing pathogen poly-
morphism. This tradeoff creates a second fitness peak at low
values of mean transmission (pathogen fitness measured as
initial growth rate in a susceptible population; Fig. S6). This
introduces an alternative to a high mean transmission
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Figure 3 Mean transmission rates correlate positively with environmental

decay rate ((a), Major Axis Regression, R2 = 0.64, P < 0.001) and with

variation in transmission ((b), best fitting model: C ¼ a=ðb0 þ expðb1�mÞÞ,
R2 = 0.80, P < 0.001), consistent with tradeoffs between those traits. Each

point gives the mean � 1 SE parameter value for one virus isolate, where

the SE was estimated from the highest posterior density (HPD) intervals

(see ‘Model fitting methods’ in Supporting Information for details). Red

lines give bootstrapped 95%CI for the regression line, computed by

propagating the posterior parameter distributions. Variation in

transmission is the coefficient of variation (CV) and by definition is

unitless.
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strategy: an isolate with low mean transmission rate has high
fitness because it is also less variable in its transmission. An
intermediate transmission rate is never favoured (Fig. S7).
Another measure of fitness, the proportion of phenotype

space over which a pathogen is able to invade a population
with a resident pathogen already present (‘invasion success’),
follows a similar pattern, with highest invasion success at
either low or high invader mean transmission rates (Fig. 4).
The values of invasion success for high-transmission

pathogens depend on the range of phenotype space consid-
ered; at high values of mean transmission, invasion success
increases linearly with mean transmission rate. However, the
low-mean-transmission peak in invasion success persists even
when an expanded upper range of mean transmission rates is
considered, and does not depend on the range (Fig. S8).
Coexistence of multiple pathogen isolates results from the

empirically observed tradeoff between mean transmission rate
and variation (CV) of transmission (Fig. 4a,b); merely adding

Table 2 Long-term coexistence of two pathogen isolates occurs only when models incorporate a tradeoff between mean transmission and variation (CV) of

transmission (entries in bold). Numerical simulations introduced two pathogens at equal densities (80.5 infectious cadavers/m2 leaf) into a host population

density of 44.7 individuals/m2 leaf, and simulated populations for 150 years or until one pathogen was extinct (density < 10�6 cadavers/m2 leaf). Only one

set of initial conditions is shown here; initial densities did not affect the final outcomes.

Mean

transmission Decay rate

CV of

transmission
Coexistence (years)

Model Tradeoffs �m1 �m2 l1 l2 C1 C2

Homogeneous pop None 10.5 0.5 0.65 0.65 0 0 0

Decay 10.5 0.5 0.99 0.32 0 0 0

Heterogeneous pop None 10.5 0.5 0.65 0.65 1.53 1.53 4

Decay 10.5 0.5 0.99 0.32 1.53 1.53 5

Variation of transmission 10.5 0.5 0.65 0.65 2.06 0.68 > 150

Decay & variation of transmission 10.5 0.5 0.99 0.32 2.06 0.68 > 150
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Figure 4 Coexistence occurs even when the invading pathogen’s mean transmission rate is 10 times smaller than the resident’s ((a,b); parameter values

from last scenario of Table 2), and does not depend on population cycling (limit cycles in (a), q = 0.5; stable equilibrium in (b), q = 1). Results are from

150-year numerical simulations with an invading pathogen introduced at year 10 into a population with host and resident pathogen at equilibrium densities

(first 100 years shown in (a,b)). Two-isolate polymorphism occurs over a range of mean transmissions (dark grey in PIP (c)). In light grey regions, the

resident is displaced; in unshaded, the mutant cannot invade (c). Invasion success (d) is the proportion of resident parameter space for which a mutant of a

given transmission rate can invade. Mean transmission �m was incremented by 0.1, and variation in transmission and environmental decay were computed as

functions of �m (c,d). Vertical ticks on the x-axis mark values observed for 16 field-collected virus isolates (c,d).
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host heterogeneity to the model is not sufficient (Table 2).
Pairwise invasibility plots (PIPs) incorporating the observed
tradeoffs predict pathogen polymorphism in a single host pop-
ulation over a wide range of transmission values (Figs 4c and
S8a). Isolates are more likely to coexist if they differ in their
transmission rates: a low-variability, low-mean-transmission
pathogen is able to coexist with a more variable, high-mean-
transmission pathogen.

DISCUSSION

We found evidence of a tradeoff arising from host heterogene-
ity that promotes long-term coexistence of two pathogen types
in a single host population. This tradeoff helps to explain the
observed range of mean transmission rates in field-collected
baculovirus isolates: those isolates with low mean transmis-
sion rates tended to also have favourable low variation (CV)
of transmission rates, which could explain their persistence in
the population.
Variation in transmission arises in our model from host

heterogeneity, and yet we found that estimates of this varia-
tion differed when the same group of hosts was infected by
different virus isolates. Among-isolate differences do not
appear to be due to genetic polymorphism within isolates (see
‘Collection of virus isolates’, Supporting Information), sug-
gesting that variation of transmission is truly a phenotypic
trait of the virus, not merely the result of variation within iso-
lates. These differences might arise because added stochastic-
ity of within-host processes in high-transmission isolates
might lead to increased variation of transmission. As time to
death increases, larval size at death (and thus viral load)
increases but variation in size at death also increases, due to
an intermediate peak in size at death with increasing time to
death (Fig. S9). Alternatively, interactions between pathogen
and host genotypes (G 9 G) could lead to different distribu-
tions of host susceptibilities and thus different variation of
transmission C among isolates. Moderate host-pathogen
G 9 G effects were observed in laboratory infections using
the baculovirus isolates from the current study (A. Hudson,
unpublished data).
Our tradeoff between mean transmission and variation in

transmission predicts the coexistence of two pathogen types,
while the 16 field-collected isolates exhibit more variation than
merely two types. In the following paragraphs, we consider
other evolutionary processes that might also contribute to
maintaining variation: tradeoffs between other pathogen
traits, within-host dynamics and coinfection, mutation-selec-
tion balance, host-pathogen specialisation, local adaptation
and frequency-dependent selection.
We tested for the presence of two tradeoffs: the classical

transmission-removal tradeoff (Anderson & May 1982), which
was insufficient for coexistence, and the tradeoff between
mean transmission rate and variation in transmission. How-
ever, it is likely that other tradeoffs are also acting to main-
tain variation here. For example, larvae can detect and avoid
virus particles on leaves to some extent (Eakin et al. 2015).
Variation in detectability could trade off with other traits such
as decay rate, if qualities such as larger size of virus particles
ensure persistence on leaves but also increase detectability.

Variation in detectability among isolates could also lead to
differences in variation in transmission C, as feeding beha-
viour is known to contribute to variation in transmission
(Eakin et al. 2015). In addition, transmission of the virus
occurs at two different stages: within-season transmission,
measured in this study, and overwinter transmission (Woods
& Elkinton 1987). Tradeoffs might also occur between patho-
gen traits that affect overwinter transmission.
Tradeoffs in traits affecting within-host competition among

pathogens are also likely to be important, as coinfections have
been previously observed in this system (Kennedy 2012). For
example, a slow-growing isolate might avoid detection by the
host immune system, but be at a disadvantage in competition
with other isolates in that host (Bremermann & Pickering
1983). More generally, tradeoffs between competition and
colonisation abilities, similar to the classic community ecology
tradeoff (Levins & Culver 1971), have been empirically
observed in pathogen within-host dynamics (e.g. Ojosnegros
et al. 2010). Coinfections generally increase the likelihood of
pathogen coexistence (May & Nowak 1995; Keeling & Rohani
2008), although if there is strong or hierarchical competition
between strains within a host, polymorphism might actually
become less likely (Bonhoeffer & Nowak 1994; Nowak &
May 1994).
Mutation-selection balance is another alternative explana-

tion for the observed variation among isolates: random muta-
tion introduces genetic variation, while selection tends to
reduce it (Gillespie 1991). However, the phenotypic differences
among isolates have quite large effects on fitness; in the
absence of a tradeoff with variation in transmission, low-
mean-transmission isolates are predicted to rapidly go extinct
(Table 2). Given this strong selection to eliminate inferior iso-
lates, the mutation rate would have to be quite high if muta-
tion-selection balance is the sole mechanism maintaining
phenotypic diversity. Mutation rates for double-stranded
DNA viruses with similarly sized genomes (160 kb) are rela-
tively low, � 10�7-10�8 substitutions per nucleotide per gen-
eration (Sanju�an et al. 2010). Many viral generations occur
during one infection, but transmission bottlenecks severely
reduce genetic diversity (Bergstrom et al. 1999), making it dif-
ficult to predict the rate of genetic change expected in the
pathogen in one host generation. While random mutation
might contribute to maintenance of genetic diversity in this
system, with such large phenotypic differences it seems likely
that selection is also acting. The tradeoff we observe here pro-
vides a mechanism for selection to maintain pathogen poly-
morphism.
Most prior theoretical (Regoes et al. 2000) and empirical

work (Lively & Dybdahl 2000; Barrett et al. 2009) on host
heterogeneity has focused on gene-for-gene resistance, where
pathogen polymorphism arises from hosts and pathogens
belonging to discrete specialised types (Flor 1971). In models
with discrete host types, different host and pathogen types are
often structured geographically, consistent with local adapta-
tion (Lively & Dybdahl 2000). They might also fluctuate over
time due to frequency-dependent selection (Bensch et al. 2007;
Tack et al. 2012). We find no evidence for geographic struc-
ture here (Figs S3 and S4), but it might be present at larger
spatial scales, or at very small scales, due to limitations on
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dispersal of older larvae between groves of trees. Temporal
fluctuations in isolate densities might also contribute to poly-
morphism. The isolates used in this study were collected over
two months (see ‘Collection of virus isolates’, Supporting
Information), and thus our current data are not appropriate
to test this hypothesis. However, host and pathogen densities
fluctuate in nature, and mean transmission rates also appear
to vary over time due to fluctuating selection for host resis-
tance (Elderd et al. 2008). The fitness of different isolates var-
ies with host and pathogen density (Figs S6 and S7; Appendix
B), suggesting that temporal fluctuations in isolate densities
might also occur.
In this and other pathogens, it is likely that many different

mechanisms are acting simultaneously to maintain polymor-
phism. There is clear evidence that the isolates used in this
study were truly coexisting. Isolates within a collection site
show polymorphism as well as evidence of following the
observed tradeoff between mean transmission and variation of
transmission (Fig. S3b), suggesting that this tradeoff could be
an important mechanism maintaining the observed coexis-
tence.
In contrast to prior work, our mechanism for pathogen

coexistence depends only on continuous variation in host sus-
ceptibility. In our model, coexistence is possible over the
whole range of correlation of transmission values, from a per-
fect correlation between isolates (q = 1) to complete local
adaptation, where susceptibility to one pathogen perfectly pre-
dicts resistance to the other (q = �1). This makes our model
flexible enough to predict coexistence in systems with different
degrees of host-pathogen specialisation. Although the discrete
generation model is specific to this system (as well as to many
other annual plant and animal species such as outbreaking
forest insects (Hunter 1991)), the within-season epidemic
model is quite general. The result that pathogen polymor-
phism can be maintained by a tradeoff arising from host
heterogeneity should apply to any system with a continuous
distribution of host susceptibilities and density-dependent
transmission, including many human diseases (Hill 1998).

ACKNOWLEDGEMENTS

This study was supported by the NIH grant R01GM096655
to G. Dwyer, V. Dukic and B. Rehill, and conducted under
USDA-APHIS permit P526P-12-01466 to G. Dwyer. Comput-
ing resources were provided in part by the University of Chi-
cago Research Computing Center. We thank J. Armagost, P.
Brandt, S. Carpenter, C. Gilroy, D. Howard, T. O’Halloran,
C. Maguire, Y. Ren, E. Rouse, I. Rouse, A. Saad, K. Siri-
anni, K. Smith, J. Tyrell, K. Vavra-Musser and S. Xie for
their help with field and laboratory experiments. Comments
from S. Cobey, D.A. Kennedy, D.J. P�aez, A. Read, K. Laf-
ferty and three anonymous reviewers substantially improved
this manuscript.

AUTHORSHIP

AFD and GD collected data, designed experiments and wrote
the code for simulations and model fitting; GD, VA and AFD
derived the mathematical model; and AFD and VD

conducted statistical analyses. AFD wrote the initial draft,
and all authors revised the manuscript.

REFERENCES

Alizon, S., de Roode, J.C. & Michalakis, Y. (2013). Multiple infections

and the evolution of virulence. Ecol. Lett., 16, 556–567.
Anderson, R.M. & May, R.M. (1981). The population dynamics of

microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond.

B Biol. Sci., 291, 451–524.
Anderson, R. & May, R. (1982). Coevolution of hosts and parasites.

Parasitology, 85, 411–426.
Barrett, L.G., Kniskern, J.M., Bodenhausen, N., Zhang, W. &

Bergelson, J. (2009). Continua of specificity and virulence in plant

host-pathogen interactions: causes and consequences. New Phytol.,

183, 513–529.
Bensch, S., Waldenstr€om, J., Jonz�en, N., Westerdahl, H., Hansson, B.,

Sejberg, D. & Hasselquist, D. (2007). Temporal dynamics and diversity

of avian malaria parasites in a single host species. J. Anim. Ecol., 76,

112–122.
Bergstrom, C.T., McElhany, P. & Real, L.A. (1999). Transmission

bottlenecks as determinants of virulence in rapidly evolving pathogens.

Proc. Natl Acad. Sci., 96, 5095–5100.
Bonhoeffer, S. & Nowak, M.A. (1994). Intra-host versus inter-host

selection: viral strategies of immune function impairment. Proc. Natl

Acad. Sci., 91, 8062–8066.
Bremermann, H.J. & Pickering, J. (1983). A game-theoretical model of

parasite virulence. J. Theor. Biol., 100, 411–426.
Bremermann, H. & Thieme, H. (1989). A competitive-exclusion principle

for pathogen virulence. J. Math. Biol., 27, 179–190.
Chapuis, E., Arnal, A. & Ferdy, J.B. (2012). Trade-offs shape the

evolution of the vector-borne insect pathogen Xenorhabdus nematophila.

Proc. R. Soc. B Biol. Sci., 279, 2672–2680.
Dieckmann, U. (2002). Adaptive dynamics of pathogen-host interactions.

In: Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence

Management (eds. U. Dieckmann, J.A. Metz, and M.W. Sabelis).

International Institute for Applied Systems Analysis, Cambridge

University Press, Cambridge, pp. 39–59.
Diekmann, O., Heesterbeek, J. & Metz, J. (1990). On the definition and the

computation of the basic reproduction ratio R0 in models for infectious-

diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.
Dwyer, G., Elkinton, J. & Buonaccorsi, J. (1997). Host heterogeneity in

susceptibility and disease dynamics: tests of a mathematical model. Am.

Nat., 150, 685–707.
Dwyer, G., Dushoff, J., Elkinton, J. & Levin, S. (2000). Pathogen-driven

outbreaks in forest defoliators revisited: Building models from

experimental data. Am. Nat., 156, 105–120.
Dwyer, G., Dushoff, J. & Yee, S.H. (2004). The combined effects of

pathogens and predators on insect outbreaks. Nature, 430, 341–345.
Dwyer, G., Firestone, J. & Stevens, T. (2005). Should models of disease

dynamics in herbivorous insects include the effects of variability in

host-plant foliage quality? Am. Nat., 165, 16.

Eakin, E., Wang, M. & Dwyer, G. (2015). The effects of the avoidance of

infectious hosts on infection risk in an insect-pathogen interaction. Am.

Nat., 185, 100–112.
Elderd, B.D., Dushoff, J. & Dwyer, G. (2008). Host-pathogen

interactions, insect outbreaks, and natural selection for disease

resistance. Am. Nat., 172, 829–842.
Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu.

Rev. Phytopathol., 9, 275–296.
Fuller, E., Elderd, B.D. & Dwyer, G. (2012). Pathogen persistence in the

environment and insect-baculovirus interactions: disease-density

thresholds, epidemic burnout, and insect outbreaks. Am. Nat., 179,

E70–E96.
Geritz, S., Metz, J., Kisdi, E. & Meszena, G. (1997). Dynamics of

adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–
2027.

© 2015 John Wiley & Sons Ltd/CNRS

1260 A. E. Fleming-Davies et al. Letter



Gillespie, J.H. (1991). The Causes of Molecular Evolution. Oxford

University Press, New York.

Grove, M.J. & Hoover, K. (2007). Intrastadial developmental resistance

of third instar gypsy moths (Lymantria dispar L.) to L. dispar

nucleopolyhedrovirus. Biol. Control, 40, 355–361.
Gupta, S., Trenholme, K., Anderson, R.M. & Day, K.P. (1994).

Antigenic diversity and the transmission dynamics of Plasmodium

falciparum. Science, 263, 961–963.
Hethcote, H. & VanArk, J. (1987). Epidemiologic models for

heterogeneous populations - proportionate mixing, parameter-

estimation, and immunization programs. Math. Biosci., 84, 85–118.
Hill, A. (1998). The immunogenetics of human infectious diseases. Annu.

Rev. Immunol., 16, 593–617.
Hodgson, D., Vanbergen, A., Watt, A., Hails, R. & Cory, J. (2001).

Phenotypic variation between naturally co-existing genotypes of a

Lepidopteran baculovirus. Evol. Ecol. Res., 3, 687–701.
Hunter, A.F. (1991). Traits that distinguish outbreaking and

nonoutbreaking Macrolepidoptera feeding on northern hardwood trees.

Oikos, 60, 275–282.
Keeling, M.J. & Rohani, P. (2008). Modeling Infectious Diseases in

Humans and Animals. Princeton University Press, Princeton.

Kennedy, D.A. (2012). Assessing the potential for evolution in the insect

baculovirus Lymantria dispar nucleopolyhedrovirus. PhD Thesis,

University of Chicago.

Kirchner, J. & Roy, B. (2002). Evolutionary implications of host-

pathogen specificity: fitness consequences of pathogen virulence traits.

Evol. Ecol. Res., 4, 27–48.
Levin, S. & Pimentel, D. (1981). Selection of intermediate rates of

increase in parasite-host systems. Am. Nat., 117, 308–315.
Levins, R. & Culver, D. (1971). Regional coexistence of species and

competition between rare species. Proc. Natl Acad. Sci., 68, 1246–1248.
Lively, C.M. & Dybdahl, M.F. (2000). Parasite adaptation to locally

common host genotypes. Nature, 405, 679–681.
Lloyd-Smith, J., Schreiber, S., Kopp, P. & Getz, W. (2005).

Superspreading and the effect of individual variation on disease

emergence. Nature, 438, 355–359.
May, R. & Nowak, M. (1995). Coinfection and the evolution of parasite

virulence. Proc. R. Soc. B Biol. Sci., 261, 209–215.
Miller, L.K. (ed.) 1997) The Baculoviruses. Springer, New York.

Murray, K. & Elkinton, J. (1989). Environmental contamination of egg

masses as a major component of transgenerational transmission of

gypsy month nuclear polyhedrosis virus (LdMNPV). J. Invertebr.

Pathol., 53, 324–334.
Musser, J.M. (1996). Molecular population genetic analysis of emerged

bacterial pathogens: selected insights. Emerg. Infect. Dis., 2, 1.

Nowak, M.A. & May, R.M. (1994). Superinfection and the evolution of

parasite virulence. Proc. R. Soc. Lond. B Biol. Sci., 255, 81–89.
Ojosnegros, S., Beerenwinkel, N., Antal, T., Nowak, M.A., Escarm�ıs, C.

& Domingo, E. (2010). Competition-colonization dynamics in an RNA

virus. Proc. Natl Acad. Sci., 107, 2108–2112.
Osnas, E.E. & Dobson, A.P. (2012). Evolution of virulence in

heterogeneous host communities under multiple trade-offs. Evolution,

66, 391–401.
Pedersen, A.B. & Fenton, A. (2007). Emphasizing the ecology in parasite

community ecology. Trends in Ecology & Evolution, 22, 133–139.
Regoes, R., Nowak, M. & Bonhoeffer, S. (2000). Evolution of virulence

in a heterogeneous host population. Evolution, 54, 64–71.
Rigaud, T., Perrot-Minnot, M.J. & Brown, M.J.F. (2010). Parasite and

host assemblages: embracing the reality will improve our knowledge of

parasite transmission and virulence. Proc. R. Soc. B Biol. Sci., 277,

3693–3702.
de Roode, J.C., Yates, A.J. & Altizer, S. (2008). Virulence-transmission

trade-offs and population divergence in virulence in a naturally

occuring butterfly parasite. Proc. Natl Acad. Sci. USA, 105, 7489–7494.
Sanju�an, R., Nebot, M.R., Chirico, N., Mansky, L.M. & Belshaw, R.

(2010). Viral mutation rates. J. Virol., 84, 9733–9748.
Tack, A.J., Thrall, P.H., Barrett, L.G., Burdon, J.J. & Laine, A.L. (2012).

Variation in infectivity and aggressiveness in space and time in wild

host–pathogen systems: causes and consequences. J. Evol. Biol., 25,

1918–1936.
Tilman, D. (1977). Resource competition between plankton algae: an

experimental and theoretical approach. Ecology, 58, 338–348.
Woods, S. & Elkinton, J. (1987). Biomodal patterns of mortality from

nuclear polyhedrosis virus in gypsy moth (Lymantria dispar)

populations. J. Invertebr. Pathol., 50, 151–157.

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via
the online version of this article at Wiley Online Library
(www.ecologyletters.com).

Editor, Kevin Lafferty
Manuscript received 25 May 2015
First decision made 28 June 2015
Second decision made 22 July 2015
Manuscript accepted 10 August 2015

© 2015 John Wiley & Sons Ltd/CNRS

Letter Host heterogeneity and pathogen diversity 1261


