
Pathogen Persistence in the Environment and Insect-Baculovirus Interactions: Disease-Density
Thresholds, Epidemic Burnout, and Insect Outbreaks.
Author(s): Emma Fuller, Bret D. Elderd, Greg Dwyer
Reviewed work(s):
Source: The American Naturalist, Vol. 179, No. 3 (March 2012), pp. E70-E96
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/664488 .
Accessed: 13/02/2012 11:32

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press and The American Society of Naturalists are collaborating with JSTOR to
digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/664488?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


vol. 179, no. 3 the american naturalist march 2012

E-Article

Pathogen Persistence in the Environment and Insect-
Baculovirus Interactions: Disease-Density Thresholds,

Epidemic Burnout, and Insect Outbreaks

Emma Fuller,1,* Bret D. Elderd,2 and Greg Dwyer1,†

1. Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637; 2. Department of Biological Sciences,
Louisiana State University, Baton Rouge, Louisiana 70803

Submitted July 26, 2011; Accepted October 31, 2011; Electronically published January 26, 2012

Dryad data: http://dx.doi.org/10.5061/dryad.7r1v08r8.

abstract: Classical epidemic theory focuses on directly transmitted
pathogens, but many pathogens are instead transmitted when hosts
encounter infectious particles. Theory has shown that for such dis-
eases pathogen persistence time in the environment can strongly
affect disease dynamics, but estimates of persistence time, and con-
sequently tests of the theory, are extremely rare. We consider the
consequences of persistence time for the dynamics of the gypsy moth
baculovirus, a pathogen transmitted when larvae consume foliage
contaminated with particles released from infectious cadavers. Using
field-transmission experiments, we are able to estimate persistence
time under natural conditions, and inserting our estimates into a
standard epidemic model suggests that epidemics are often termi-
nated by a combination of pupation and burnout rather than by
burnout alone, as predicted by theory. Extending our models to allow
for multiple generations, and including environmental transmission
over the winter, suggests that the virus may survive over the long
term even in the absence of complex persistence mechanisms, such
as environmental reservoirs or covert infections. Our work suggests
that estimates of persistence times can lead to a deeper understanding
of environmentally transmitted pathogens and illustrates the use-
fulness of experiments that are closely tied to mathematical models.

Keywords: host-pathogen, Lymantria dispar, nucleopolyhedrovirus,
threshold theorem, insect outbreaks, environmental transmission,
complex dynamics.

Introduction

In classical epidemic models, transmission results from
contact between healthy and infectious hosts (Kermack
and McKendrick 1927), but for many animal pathogens,
transmission instead occurs when hosts contact infectious
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particles in the environment (Ebert et al. 1996; Hall et al.
2005; Mathiason et al. 2009). For such diseases, theory has
shown that pathogen persistence time in the environment
is an important determinant of whether an epidemic will
occur (Breban et al. 2009), but applications of the theory
require estimates of persistence times. Estimating persis-
tence times from observations of disease spread in nature
is difficult, because losses due to pathogen breakdown may
be outweighed by gains due to pathogen particles pro-
duced from new infections (Woods and Elkinton 1987),
making it hard to distinguish persistence from infectious-
ness. Meanwhile, field experiments that can disentangle
persistence and infectiousness are often impossible (Dob-
son and Meagher 1996). Persistence-time estimates are
therefore rare, and so applications of the theory are cor-
respondingly rare.

For baculovirus diseases of insects in contrast, field ex-
periments are entirely feasible (D’Amico and Elkinton
1995; Goulson et al. 1995; Hails et al. 2002; Georgievska
et al. 2010). In many insects, baculoviruses are transmitted
when larvae consume foliage contaminated with the in-
fectious cadavers of other larvae, and infection generally
leads to death (Cory and Myers 2003). This simple biology
makes it possible to experimentally quantify transmission
in the field (Dwyer 1991; Zhou et al. 2005; Elderd et al.
2008), and extending this type of experiment to also mea-
sure baculovirus persistence time is straightforward. We
therefore used a field-transmission experiment to estimate
the persistence time of a baculovirus of the gypsy moth,
Lymantria dispar, and we used our estimate in mathe-
matical models to show how persistence time affects bac-
ulovirus epidemics and gypsy moth outbreaks.

Experiments that show evidence of baculovirus decay
have a 45-year history (Jaques 1967), yet to our knowledge
baculovirus persistence time under natural conditions in
the field has never been estimated. Previous experiments
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generally did not consider estimation, instead simply test-
ing whether a treatment alters the effect of exposure time
on the infection rate (Jaques 1967, 1968, 1972; Broome et
al. 1974; Elnagar and Abul-Nasr 1980; Biever and Hostetter
1985; Roland and Kaupp 1995; Webb et al. 1999, 2001;
Raymond et al. 2005). Apparently as a result, most ex-
periments were not designed in a way that permits separate
estimation of persistence time and infectiousness, as we
explain in the appendix. Also, previous experiments have
generally followed biological control programs in using
purified virus (Hunter-Fujita et al. 1998), which may lead
to artificially reduced persistence times. In our experi-
ments, we mimicked natural transmission by using infec-
tious cadavers, and comparing our estimate of persistence
time to estimates based on data for purified virus (Webb
et al. 1999, 2001) shows that purified gypsy moth virus
breaks down roughly twice as fast as infectious cadavers.

Our estimate of virus persistence time is important be-
cause it helps us to understand both virus epidemics and
insect outbreaks. To show this, we first inserted our es-
timate into an epidemic model, modified to allow pupation
to terminate transmission, and we compared the predic-
tions of this model to two predictions of epidemic theory
(Keeling and Rohani 2007). The first prediction is that
there will be a minimum host population at which an
epidemic will occur, the disease density (or host density)
threshold. The second prediction is that epidemics will
end because of a lack of infected hosts rather than because
of a lack of susceptible hosts, so-called epidemic burnout.
If persistence time is sufficiently high, however, the disease
threshold may be so low that whether an epidemic occurs
will be determined by the initial density of the pathogen
instead of by the threshold. Alternatively, if persistence
time is sufficiently low, epidemics will end because of host
pupation rather than burnout. Our models show that the
persistence time of the gypsy moth virus is short enough
that the disease-density threshold is a useful statistic, but
it is also short enough that pupation is often as important
as burnout in ending epidemics.

These effects can modulate outbreaks because gypsy
moth population dynamics are partly driven by virus ep-
idemics (Dwyer et al. 2004; Bjornstad et al. 2010). Ex-
tending our single-epidemic model to allow for multiple
host generations shows that shorter persistence times pro-
duce less severe outbreaks. Moreover, our estimate of per-
sistence time leads to long-term virus survival in the mod-
els, even though the models include only simple
mechanisms of overwinter survival, notably external con-
tamination of egg masses. This is important because efforts
to explain long-term baculovirus persistence often em-
phasize more complex survival mechanisms, such as soil
reservoirs (Thompson et al. 1981; Hochberg 1989; Fuxa
and Richter 2007) and covert infections (Myers et al. 2000;

Burden et al. 2003). Our model instead suggests that res-
ervoirs and covert infections may not be necessary to ex-
plain baculovirus persistence, either in the gypsy moth or
in other insects (Moreau and Lucarotti 2007).

Material and Methods

Baculovirus Ecology and Epidemic Models

Like many outbreaking insects (Hunter 1991), gypsy
moths have only one generation per year, with five instars
(larval stages) in males and six in females. In southwestern
Michigan, where we carried out our experiments, larvae
hatch in late April or early May. Pupation occurs in mid-
July, and the insect overwinters in the egg (Elkinton and
Liebhold 1990).

In the spring, some hatchlings (or neonates) become
infected, later releasing infectious occlusion bodies that
begin the epidemic (Woods and Elkinton 1987). Unin-
fected larvae that consume a large enough dose of the
virus die 7–21 days after infection and release occlusion
bodies onto the foliage for consumption by other larvae
(Cory and Myers 2003). The most important round of
transmission thus occurs when virus produced by infected
neonates infects larvae in the third and fourth instars
(Woods and Elkinton 1987). In our experiments, we there-
fore measured transmission from infected neonates to un-
infected fourth instars.

Although models of directly transmitted diseases assume
that transmission occurs only through contact between
infected and uninfected hosts, we can nevertheless use such
models for baculoviruses by using the infectious-host class
in the models to represent infectious cadavers. The model
that we use is therefore a modification of the well-known
susceptible-exposed-infected-removed model (Keeling and
Rohani 2007), extended to allow for host heterogeneity in
infection risk, an important factor in the transmission of
the gypsy moth virus (Dwyer et al. 1997). This model is
a variant of models previously used by the second and
third authors, extended to allow for variance in the dis-
tribution of the time between infection and death, a var-
iance that we previously assumed was very low (Dwyer
and Elkinton 1993; Elderd et al. 2008). Because it allows
for nonzero variance in this distribution, the model that
we use here is slightly more realistic, and it has the ad-
vantage of being more stable when numerically integrated
on a computer:
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2C

dS S(t)
¯p � nSP , (1)( )dt S(0)

2C

dE S(t)1 ¯p nSP � mdE , (2)1( )dt S(0)

dEi p mdE � mdE (i p 2, … , m), (3)i�1 idt

dP
p mdE � mP. (4)mdt

Here S is the density of uninfected or susceptible hosts,
and P is the density of infectious cadavers. Gypsy moth
larvae vary in the dose of virus needed to cause infection
(Dwyer et al. 1997), as well as in feeding behavior (Parker
et al. 2010), leading to variability in overall infection risk
(Dwyer et al. 2005; Elderd et al. 2008). We therefore as-
sume that transmission rates follow a probability distri-
bution with mean and coefficient of variation C. Ton̄

describe the probability distribution that models the time
between infection and death, we follow standard practice
in dividing the exposed class into m classes, such thatEi

the average speed of kill is and the rate at which in-1/d
dividuals move from one class to the next is (Keelingmd

and Rohani 2007). The total time in the exposed classes
is then equal to the sum of m exponential distributions,
each with mean . This sum follows a gamma dis-1/(md)
tribution with mean and variance , so that the21/d 1/(md )
variance declines as m increases. We can therefore control
the variance on the distribution of speeds of kill by varying
m. We assume days, with , based on1/d p 12 m p 20
observations of speeds of kill of infected larvae (G. Dwyer,
unpublished data). This model requires integer values of
m, but in our case changing m by 1 instead of, say, by 0.5,
has only a tiny effect on the epidemic. Also, because hatch-
ling larvae are much smaller than later instars, we allow
for a simple form of stage structure by assuming that
infected hatchlings produce smaller cadavers than later
instars.

Once larvae reach the final exposed class m, they die
and become infectious cadavers P. Cadavers break down
at rate m, so estimating m was the goal of our experiments.
The average persistence time of the virus is , so that1/m
large values of m produce short persistence times. Decay
likely occurs because the virus is destroyed or inactivated
by the ultraviolet rays in sunlight (Ignoffo et al. 1977),
but the virus may also be washed off foliage by rain
(D’Amico and Elkinton 1995). Versions of this model have
survived extensive testing with both experimental and ob-
servational data for the gypsy moth virus (Dwyer and Elk-
inton 1993; Dwyer et al. 1997, 2005; Elderd et al. 2008).

We therefore use it to understand the implications of our
parameter estimates.

Field Experiments

Field observations of baculovirus populations cannot eas-
ily be used to estimate decay rates, because losses of virus
due to decay are often offset by inputs of virus due to
new virus-caused deaths (Woods and Elkinton 1987). Pre-
vious field studies have therefore simply observed that
virus is present at two points in time, usually one im-
mediately following an epidemic and one a year or more
later, with the conclusion that virus particles can some-
times survive for a year or more (Tanada and Omi 1974;
Entwistle and Adams 1977; Young et al. 1977; Podgwaite
et al. 1979; Olofsson 1988).

An experimental approach might therefore be more ef-
fective, but most experiments that vary exposure time have
used only a single virus density (Broome et al. 1974; El-
nagar and Abul-Nasr 1980; Biever and Hostetter 1985;
Raymond et al. 2005). As we show in the appendix, these
single-density experiments generally preclude estimation
of decay rates using standard models. In standard models,
infection rates are a nonlinear function of both exposure
time and virus density, and the effects of the two cannot
be distinguished unless they are varied independently (Sun
et al. (2004) avoid this problem by instead back-calculating
virus densities using dose-response data collected in an
additional experiment, but their approach may underes-
timate parameter uncertainty; appendix). The few exper-
iments that varied virus density and exposure time in-
dependently did not attempt to estimate the decay rate
(Jaques 1967, 1972; Webb et al. 1999, 2001), possibly be-
cause of the difficulties of using the nonlinear fitting rou-
tines that are required for estimating parameters from frac-
tional data. Also, experiments with baculoviruses have
historically used purified virus, because the point of many
experiments is to test insecticidal sprays, which usually
incorporate only purified virus and because some authors
have perhaps assumed that infectious cadavers would pro-
duce data that are so noisy as to be uninterpretable. An
important feature of natural transmission, however, is that
infectious cadavers include insect body parts that may
block UV (Capinera et al. 1976), and so experiments using
purified virus may produce artificially inflated estimates
of the decay rate. The use of infectious cadavers is therefore
increasingly common, but for all the infectious-cadaver
experiments of which we are aware, it is unclear whether
the initially infected larvae were all dead when decay began,
so virus inputs and virus losses probably occurred at the
same time (Goulson et al. 1995; Hails et al. 2002; Zhou
et al. 2005; Georgievska et al. 2010; the one exception,
Roland and Kaupp 1995, only compared decay inside a
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forest to decay on the edge of the forest and so included
neither exposure-time treatments nor density treatments;
it therefore also cannot be used to estimate decay time).
Data from such experiments have the same problem as
data from observations of epidemics, namely that decay
is confounded with transmission, and apparently as a result
in some cases it was impossible to detect the effects of
exposure time (Goulson et al. 1995; Hails et al. 2002).

Our experiments were designed to circumvent these dif-
ficulties. First, to avoid an inflated estimate of natural
decay, we used infectious cadavers. We then used six to
eight replicates of each treatment, depending on the ex-
periment, which was enough that the uncertainty in our
data was reasonably low, in turn permitting detection of
virus decay. Meanwhile, two previous purified-virus ex-
periments produced usable decay data for the gypsy moth
baculovirus (Webb et al. 1999, 2001), and reanalysis of
those data confirmed that purified virus does indeed have
a significantly shorter persistence time than infectious ca-
davers. Using infectious cadavers also allowed us to more
accurately estimate the transmission rate , which wen̄

needed to estimate the density threshold. Because is es-n̄

sentially infection risk, it is affected by feeding behavior
(Dwyer et al. 2005), including the ability of gypsy moth
larvae to detect and avoid infectious cadavers (Capinera
et al. 1976; Parker et al. 2010). Unbiased estimation of n̄

therefore required that we allow larvae to feed on virus-
contaminated foliage under natural conditions, and so
again it was important to use infectious cadavers.

Second, to avoid the obscuring effects of additions of
virus while decay is occurring, we only allowed decay to
begin after all of the initially infected larvae were dead. To
do this, we placed the infected larvae on the foliage, and
we enclosed larvae and foliage in mesh bags. The bags
were necessary to prevent larvae from dispersing to other
branches, but as we will show, they also effectively pre-
vented decay. Once we were sure that the infected larvae
were dead, we allowed for decay by removing the bags.
After the virus had decayed for the requisite time, we added
healthy larvae to the foliage, using new bags, which pre-
vented further decay during transmission. To prevent later
additions of virus due to the deaths of secondarily infected
larvae, we allowed the uninfected larvae to feed for only
1 week, a period short enough that no secondarily infected
larvae died during the experiment. At the end of the week,
we removed the initially uninfected larvae to the lab, ter-
minating transmission, and we recorded the number of
larvae dying of the virus. Our experiments therefore al-
lowed for only one round of transmission (note that in
contrast, our epidemic model, eqq. [1]–[4], allows for
multiple rounds of infection, but this difference does not
restrict our analyses in any way). We then used the fraction
infected to estimate the transmission parameters and Cn̄

and the viral decay rate m by fitting the model equations
(1)–(4) to the data.

To ensure that the initially uninfected larvae were indeed
uninfected, we reared them in the lab on artificial diet
using surface-disinfected eggs. Surface disinfection for 90
minutes in 10% formalin is effective in preventing infec-
tion (Doane 1969; Elderd et al. 2008). Because small dif-
ferences in developmental stage within an instar can alter
susceptibility (Grove and Hoover 2007), we synchronized
larvae by collecting them shortly before eclosion to the
fourth instar, holding them for 24–48 hours at 4�C until
we had enough larvae to carry out an experiment and then
allowing all larvae to molt to the fourth instar at room
temperature. The effect was that all of our uninfected lar-
vae molted to the fourth instar within roughly 24 hours
of each other.

To produce infected larvae, we placed neonates in cups
with diet contaminated with a high virus dose (Dwyer et
al. 2005). By using a plaque-purified virus clone, we en-
sured that variability in the virus would play little role
(Elderd et al. 2008). We then held these infected larvae at
28�C for 5 days before placing them on foliage in the field.
Because infected neonates do not molt to the second instar
(Park et al. 1996), it was possible to identify and discard
the small number of larvae that did not become infected.
Because our emphasis was on estimating the decay rate
rather than heterogeneity in infection risk, we reduced
heterogeneity by using larvae from a U.S. Department of
Agriculture colony that has been reared in the laboratory
for decades (Dwyer et al. 1997).

The infected larvae were placed on leaves of naturally
occurring red oaks (Quercus rubra), a “most-favored’’ host
plant of the gypsy moth (Barbosa and Krischik 1987).
Experimental trees were located in the Lux Arbor Reserve
of the Kellogg Biological Station, in Delton, Michigan
(42�28′N, 85�28′W). This site had negligible levels of gypsy
moths or virus during the years of our study (Elderd et
al. 2008). Each larva-laden branch was enclosed within
bags made of spun-bonded polyester or Reemay, which
has only modest effects on humidity and temperature (Lip-
man et al. 1992). We used virus densities of 25 and 50
cadavers per branch, a range that is sufficient to produce
measurable infection rates (Dwyer et al. 2005), and that
falls within the range of densities observed in nature
(Woods and Elkinton 1987). We also included a control
treatment containing no infected larvae, to test whether
infections could be due to naturally occurring virus. In-
fection rates on the control branches were close to zero.

Five days after deployment the infected larvae were all
dead, so we removed the bags from the branches, exposing
the virus-contaminated foliage to the environment. Be-
cause, as we will show, decay inside the bags is negligible,
no decay occurred until the bags were removed from the
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foliage, so all virus had already been added to the foliage
when decay began. We used exposure times of 0, 1, 3, and
7 days in 2007, each replicated six times. However, the
2007 data suggested that our estimates would be more
accurate if we used more replicates and eliminated the
longest exposure-time treatment, so in 2008 we used treat-
ments of 0, 1 and 3 days, each replicated eight times. After
exposing the cadavers, we enclosed the branches within
new bags to prevent transmission through contact with
the mesh, and we released 20 uninfected fourthth instars
onto each branch. We allowed the uninfected larvae to
feed for 7 days, after which we placed them in individual
diet cups for 3 weeks to determine whether they were
infected. Infected larvae are usually recognizable because
they liquefy, but in cases of uncertainty we examined larvae
under a light microscope, where the occlusion bodies were
clearly visible at #400 (Miller 1997).

In 2007, many initially uninfected larvae were lost to
predation by other insects, notably stink bugs (Heterop-
tera: Pentatomidae), and in any case the experimental de-
sign was still rough. In 2008 we used a more powerful
design and stink bug predation was low, and so our es-
timate of the decay rate from 2008 is thus more reliable.
As we will show, however, virus decay was detectable in
both years, and so we include both data sets. Also, in 2007
the experiment was carried out in July, while in 2008 the
experiment was carried out in June, but previous work
has made clear that the timing of this type of experiment
within the summer has no effect on the results (Dwyer et
al. 2005).

Statistical Tests

To estimate the decay rate m and the transmission param-
eters and C, we simplified the single-epidemic model ton̄

match the conditions of our experiments. After the un-
infected larvae were placed on the branches, no more virus
was added, and as we will show the virus does not decay
while the foliage is in a bag, so we can set the rate of
change of infectious cadavers inside the bags .dP/dt p 0
We allowed virus transmission for 7 days ( ), and sot̂ p 7
we integrate equation (1) for the host population from 0
to . Equation (1) can then be solved to give the fractiont̂
of susceptible hosts S remaining after transmission has
ended (appendix). Because our main interest was in de-
tecting virus decay, our statistical analyses were designed
to determine whether allowing for improved them 1 0
model’s fit to the data. We therefore considered two ver-
sions of the model, one with and one with .m 1 0 m p 0
If we assume , we havem 1 0

ˆS(t) 22 �mT �1/Cˆ¯p (1 � nC P(0)e t) . (5)
S(0)

If we assume , we havem p 0

ˆS(t) 22 �1/Cˆ¯p (1 � nC P(0)t) . (6)
S(0)

Here and are the densities of uninfected hosts atˆS(0) S(t)
the beginning and the end of the transmission period,
respectively. The initial density of infectious cadavers is
then , and T is the length of time that virus-contam-P(0)
inated leaves were exposed to the environment before
transmission began. Following equation (4) for the infec-
tious-cadaver population, we thus assume that, in the ab-
sence of new virus deaths, the virus population decays
exponentially when exposed to the environment.

Monte Carlo simulations have shown that estimates of
heterogeneity C using this type of experiment have smaller
confidence intervals if the experiment includes a larger
number of virus densities (G. Dwyer, unpublished data).
Because our emphasis was on estimating the decay rate m,
however, we sacrificed a larger number of virus densities
in favor of a larger number of exposure-time treatments.
Similarly, values of C tend to be higher for feral larvae
than for laboratory larvae (Dwyer et al. 1997, 2005), but
because of our emphasis on estimating the decay rate, we
used laboratory larvae to reduce overall variability and so
to increase statistical power. Consequently, as we will show,
models that assume fit our data better than modelsC r 0
that assume . If we allow , then the model forC 1 0 C r 0

ism 1 0

ˆS(t)
�mTˆp exp (�nP(0)e t), (7)

S(0)

whereas for , the model ism p 0

ˆS(t) ˆp exp (�nP(0)t). (8)
S(0)

In fact, 11 previous experiments by the second and third
authors and colleagues have demonstrated that, for the
gypsy moth, heterogeneity , even for laboratory lar-C 1 0
vae (Dwyer et al. 1997, 2005; Elderd et al. 2008). Accord-
ingly, even though in the interests of statistical rigor we
emphasize the fit of models for which , we alsoC p 0
report results for the case for which . Fortunately,C 1 0
our estimates of the decay rate m in the two cases are very
similar.

In our statistical models we assume that no virus decay
occurs within the mesh bags. To test this, in 2007 we
included a treatment in which all infected larvae were dead
7 days before the experiment began, but for which the
infectious cadavers were never exposed to the environ-
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ment. We thus allowed for a week of virus decay, but only
within a bag (although we again put new bags on before
adding uninfected larvae, as in the other treatments). As
with the other treatments, this additional treatment was
replicated six times. For the 2007 data, we therefore in-
cluded a model with a separate rate for decay inside the
bag (see appendix for the models).

To estimate m, , and C in equations (5)–(8), we fit eachn̄

equation to the data using maximum likelihood, using the
nonlinear-fitting routines optim and optimize in the R pro-
gramming language (R Development Core Team 2009).
We used a binomial likelihood function, as is appropriate
for mortality data (McCullagh and Nelder 1989), but to
allow for the possibility of overdispersion, we calculated
a variance-inflation factor (Burnham and Anderson 2002).
The variance-inflation factor is the goodness-of-fit x2 sta-
tistic of the global model, in this case equation (5), divided
by the degrees of freedom (McCullagh and Nelder 1989).
For the 2007 data the variance-inflation factor was 2.23,
while for the 2008 data it was 1.89. These values are small
enough (!4) to suggest that there was no systematic lack
of fit, but large enough that we used them to adjust our
AICc values, by dividing each AICc value by the variance
inflation factor (Burnham and Anderson 2002). This sta-
tistic is known as the quasi-likelihood AIC, or QAICc, but
for brevity we refer to it as an AICc score. By choosing
the best model using the AICc, we tested whether the mod-
els that assume provide a better explanation for them 1 0
data than the models that assume . The lower them p 0
AICc score, the better the model (Burnham and Anderson
2002).

We calculated 95% confidence intervals on the decay
rate m using bootstrapping (Efron and Tibshirani 1994),
to determine whether the confidence intervals overlapped
0. To do this we randomly selected replicates with replace-
ment from within a given year’s data until we had as many
replicates as used in that year, and then we recalculated
the parameter values. This procedure was repeated 1,000
times, and the resulting distribution provided 95% con-
fidence intervals for each parameter.

We also estimated the decay rate of purified gypsy moth
virus by reanalyzing data from Webb et al. (1999, 2001).
In these experiments, purified virus was sprayed on foliage
of “mostly’’ pin oak, Quercus palustris (other tree species
were not named), in combination with water and bond
sticker (we did not consider treatments in which any other
compounds were added to the spray, such as Blankophor
BBH, because of our interest in natural transmission), and
uninfected larvae were added to the foliage at 0 and 1
week after virus application in 1999 and at 0, 1, and 2
weeks in 2001. Because of these small differences, com-
parisons between our estimate and the estimate for the
Webb et al. data are not definitive, but they provide an

interesting comparison. We analyzed the data using es-
sentially the same methods that we used for our own data
(some small differences are described in the appendix). In
the Webb et al. (2001) article, the data were analyzed in
such a way that some treatment-specific standard errors
were not reported, and so in making inferences we focus
on the Webb et al. (1999) data.

Long-Term Dynamics

In our experiments, we measured the survival time of the
virus on foliage. Because the gypsy moth feeds on decid-
uous trees, survival on foliage is unlikely to be an effective
overwinter persistence mechanism. Nevertheless, as we will
show, survival on foliage also affects long-term dynamics,
because its effects on epidemics lead to effects on the size
of the host population. To show this, we extended our
single-epidemic model to allow for long-term dynamics.
Allowing for long-term dynamics required that we esti-
mate pathogen persistence over the winter. Possible over-
winter persistence mechanisms include soil reservoirs, cov-
ert infections, survival in the larval environment, and
contamination of egg masses.

In empirical investigations of baculovirus persistence in
soil reservoirs, transmission has been measured only in
the lab. The typical approach is to add material from the
field, such as soil or duff from the forest floor, to distilled
water (Podgwaite et al. 1979; Thompson et al. 1981) and
then to feed the resulting solution to larvae in the lab. The
occurrence of infections then indicates that the virus is
present, but for such virus to cause infections in nature,
it would have to be translocated to the foliage so that larvae
can eat it (Thompson et al. 1981; Fuxa and Richter 2007).
Because one of the motivating principles of our work is
that persistence time is best studied through its effects on
transmission in the field, we do not consider persistence
mechanisms for which there is no evidence of field trans-
mission. We therefore do not attempt to estimate survival
rates from existing data on soil reservoirs.

Similar difficulties hold for another survival mechanism,
covert infections, in which a host harbors a virus but shows
no signs of infection (Il’inykh and Ul’yanova 2005). If such
latent virus is activated, the host may die of the infection,
leading to horizontal transmission that may spark an ep-
idemic. Existing data consist of observations of virus out-
breaks in laboratory populations held under sterile con-
ditions (Burden et al. 2006), and detection, using
polymerase chain reaction, of viral DNA in individuals in
the field (Burden et al. 2003; Kouassi et al. 2009; Vilaplana
et al. 2010). The latter data often reveal high latent infec-
tion rates, and so covert infections would seem to have
the potential to play an important role in baculovirus dy-
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namics. The rate at which covert infections convert to
overt infections in nature, however, is unknown.

Moreover, for the gypsy moth in particular, evidence
for covert infections is weak. Surface disinfection of egg
masses in the third author’s lab reduced contamination in
lab larvae to two apparently unexposed individuals out of
roughly 105 insects over 8 years. Data cited as evidence in
favor of covert infections in contrast are derived either
from nondisinfected egg masses (Myers et al. 2000) or
from stressing larvae from disinfected eggs in the labo-
ratory, on the theory that stressors may activate latent virus
(Ilyinykh et al. 2004). In the latter study, the stressor shown
to elevate infection rates in gypsy moths was copper sul-
fate, whereas natural stressors such as cold temperatures,
high densities, or hatching delays had no effect (Ilyinykh
et al. 2004). Moreover, infection rates in controls were
never zero, and so copper sulfate may simply lower resis-
tance. The rate at which covert infections produce overt
infections therefore appears to be very low in gypsy moths.
More immediately, existing data do not meet our criterion
of showing effects on transmission in the field.

Evidence for overwintering through survival on bark,
or through egg-mass contamination, is in contrast quite
strong. First, Woods et al. (1989) showed that virus on
bark can lead to infection when larvae walk over contam-
inated bark and then transfer the virus to the foliage. Sur-
vival on bark thus meets our criterion of providing evi-
dence of transmission in the field. We therefore use
Podgwaite et al.’s (1979) rough estimate that survival on
bark is less than 1% year�1. As we will show, this parameter
has a small enough effect on the dynamics that the dif-
ference in effects between a minimum of 0% survival and
a maximum of 1% is slight.

Evidence for the importance of external contamination
of egg masses is even stronger (Doane 1970). Part of the
evidence is again that surface sterilization of field-collected
egg masses reduces infection rates from high values to
values near 0 (Doane 1969; Elderd et al. 2008). Moreover,
Murray and Elkinton (1989) provide direct experimental
evidence that egg mass contamination occurs as a result
of eggs being laid on contaminated bark. They transferred
egg masses between field populations that had had virus
epidemics of different intensities in the previous season to
show that the fraction hatching infected was significantly
higher when eggs were laid at a high-virus site. In contrast,
there was no effect of the site that eggs were moved to
after laying. More generally, infection rates among larvae
hatching from naturally occurring eggs laid at the high-
virus site averaged 55%, suggesting that egg-mass contam-
ination can lead to high rates of overwinter survival. We
therefore use Murray and Elkinton’s data to estimate the
rate of overwinter transmission due to egg-mass contam-
ination (appendix).

In our long-term model, we thus allow for virus over-
wintering due to either egg-mass contamination or sur-
vival in the environment, and we leave out covert infec-
tions and soil reservoirs. Our models are therefore perhaps
less general than some models in the literature (Boots et
al. 2003; Bonsall et al. 2005; Sorrell et al. 2009), in that
we do not consider every possible overwintering mecha-
nism. A focus on mechanisms supported by field data,
however, has the advantage of producing a more parsi-
monious model. To the extent that our models show long-
term virus persistence, we can argue more strongly that
some persistence mechanisms may not be necessary for
explaining baculovirus persistence in nature.

Our long-term model is

abNn�nN p le N [1 � i(N , Z )] 1 � , (9)n�1 n n n 2 2( )b � Nn

Z p f N i(N , Z ) � gZ . (10)n�1 n n n n

Here and are the densities of insects and infectiousN Zn n

cadavers, respectively, before the epidemic in generation
n, and is the fraction of larvae that become in-i(N , Z )n n

fected. The symbol l is the net reproductive rate, while
is a normally distributed random variable with mean�n

0, representing the environmental stochasticity that often
affects insect populations. The symbol f is the overwinter
survival rate of virus produced in the previous generation,
and g is the overwinter survival of virus from previous
generations. Our expectation is that f represents egg-mass
contamination and that g represents survival on bark, but
in fact the model is more general than these interpreta-
tions. Although we do not expect that virus that is more
than 1 year old will have a different survival rate, as we
will show, it is conceptually useful to model these rates
separately. Also, for many outbreaking insects, generalist
predators and parasitoids can play a crucial role in keeping
inter-outbreak populations low (Dwyer et al. 2004), and
so we allow for a Type III predation term. Because we
track the fraction surviving, the term 21 � (abN )/(b �n

then describes the fraction of hosts that survive pre-2N )n

dation, with a, the maximum predation rate, and b, the
saturation constant on the functional response of the pred-
ator. To allow for a range of possibilities, we consider
models with and without the predator, setting the pre-
dation rate to eliminate predation.a { 0

Previous work using versions of this model relied on
the burnout approximation (below), to describe the frac-
tion infected (Dwyer et al. 2004; Bjornstad et al. 2010).
Under the burnout approximation, the decay rate m and
the transmission rate affect only the scale of host pop-n̄

ulation density, meaning that they do not affect the period
or amplitude of outbreaks or whether outbreaks occur
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(Dwyer et al. 2004). Here we instead allow pupation to
terminate epidemics, so that we use equations (1)–(4) with
the epidemic length set to 56 days, roughly the length of
the larval period in gypsy moths. For this model, rescaling
eliminates average transmission but not the decay pa-n̄

rameter m (appendix), and as we show in “Results” changes
in the decay rate can therefore affect the amplitude of
outbreaks.

To understand the relative importance of egg-mass con-
tamination and survival in the environment, it is worth
examining the rescaled equation for the pathogen popu-
lation:

ˆ ˆ ˆˆ ˆZ p fhN i(N , Z ) � gZ . (11)n�1 n n n n

Here the host and pathogen densities have been rescaled
according to and . We can then seeˆˆ ¯ ¯N { nN Z { nhZn n n n

that the virus-survival parameter f and the hatchling sus-
ceptibility parameter h affect the dynamics only as a prod-
uct, and so we define to be the overwinter impactf { fh
of the pathogen. To understand the importance of the
difference between f and g, we note first that

is the contribution to the virus populationˆˆ ˆfN i(N , Z )n n n

of infectious cadavers from the epidemic in the previous
generation, whereas is the contribution from gener-ˆgZn

ations before that. The parameter f thus describes only
the impact of cadavers from the previous generation,
which we again interpret as egg-mass contamination,
whereas g describes only the impact of cadavers from ear-
lier generations, which we interpret as survival in the en-
vironment. Because it is likely that h is at least 100, it is
possible that (shortly we will show that f is at leastf 1 1
3), whereas by definition g is less than 1. The effect of
small increases in f, the survival of cadavers from the pre-
vious generation, is thus greatly amplified by the effects
of h, the relative susceptibility of hatchlings. We therefore
expect that the survival of cadavers from the previous
generation will have a much stronger effect on outbreaks
than will the survival of cadavers from earlier generations.

Results

Experiments

As we expected, in both years, the infection rate was lower
in the 25-cadaver treatment than in the 50-cadaver treat-
ment (figs. 1, 2). More importantly, in both experiments,
at both virus densities, the fraction infected generally de-
clined with increasing exposure time. The standard errors
for 2007, however, were much larger than for 2008, prob-
ably because of the reduction in sample size that resulted
from stink bug predation.

AIC analysis confirmed that the models that included
the decay rate m (eqq. [5] and [7]) gave a better fit to the

data than the models that assumed (eqq. [6] andm p 0
[8]; table 1). In 2007, the best model included decay both
outside the bags and inside the bags, but the decay rate
inside the bag was so low as to be negligible (table 2).
Also, in 2007 the AIC difference between the best model
and a model with no decay was less than 2, indicating that
models that exclude decay provide nearly as good an ex-
planation for the data as models that do not include decay.
This lack of discriminatory power in the 2007 data is prob-
ably due either to the uncertainty introduced by stink bug
predation or to the less powerful experimental design. The

score for the model with was similarly 2 orDAIC C 1 0c

less in both years, suggesting that the models with het-
erogeneity explain the data nearly as well as the models
without heterogeneity. Fortunately, our best estimates of
m are nearly the same irrespective of whether we assume

(table 2). Although our best estimate of the averageC 1 0
viral lifetime from the 2007 data was 14.3 days, the 95%
confidence interval includes 6.19 days and 26.2 days (table
2). Our estimate from the 2008 data of 2.56 days therefore
appears to be more reliable.

Table 2 also shows that the decay rates from Webb et
al. (1999, 2001), based on purified virus, are at least two
times higher than our decay rates based on infectious ca-
davers, and the confidence intervals do not overlap. Small
differences between studies make it difficult to be conclu-
sive, but the comparison provides preliminary evidence
that purified virus decays faster. Moreover, persistence
times for purified virus of other insects are also generally
less than a day (Jaques 1967, 1972; Sun et al. 2004; see
appendix for estimates from the Jaques data). Purified
virus of other insects therefore also appears to break down
quite rapidly.

A related point is that accurate calculation of the trans-
mission rate from the Webb et al. experiments is difficultn̄

because important details such as leaf area were not pro-
vided. We made conservative assumptions in several cases
of uncertainty (appendix), but the resulting estimates are
nevertheless orders of magnitude higher than the estimates
from our experiments. Part of the explanation is probably
that the virus in the Webb et al. experiments was applied
uniformly over the leaf, which can raise infection rates
(D’Amico et al. 2005), and also that larvae cannot easily
detect and avoid purified virus (V. D’Amico, unpublished
data). The estimate of the decay rate m, however, is un-
affected by errors in the estimation of .n̄

The Usefulness of the Disease-Density Threshold and the
Burnout Approximation

We next use our estimates of the transmission rate andn̄

the decay rate m in our single-epidemic model, equations
(1)–(4), first using only our 2008 estimate for purposes
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Figure 1: Comparison of best-fit model prediction to data from 2007. Data (points) show the mean fraction infected, with one standard
error of the mean. Curves show the best-fit model predictions, such that the thin line is for , equation (7), and the thick line is form 1 0

, equation (8). A, Results for 25 cadavers per branch; B, results for 50 cadavers per branch. To illustrate the fit of the models, wem p 0
use different vertical axis scales for the two panels.

of exposition but shortly considering a range of values. As
figure 3A, 3B shows, the pathogen begins at a low density,
but ultimately it reaches a high enough density to cause
the density of uninfected hosts S to drop rapidly (the
complex fluctuations in the pathogen population reflect
the time delay between infection and death, which intro-
duces a kind of stage structure into the infected population
(not shown)). Eventually depletion of the susceptible pop-
ulation causes viral decay to outweigh transmission, so
that the density of cadavers drops toward zero, leaving
behind a reduced but nonzero host population.

In figure 3A, 3B, the initial host densities are typical of
the low end of densities at which baculovirus epidemics
have been observed (Woods and Elkinton 1987). These
populations are nevertheless far enough above the disease-
density threshold that overall mortality is quite high. It is
possible to prove, however, that the host population in the
model will never reach 0, even if the population starts yet
farther above the threshold and time goes to infinity
(Thieme 2003). In the absence of pupation, epidemics in
the model are thus terminated when the infected popu-

lation reaches 0, rather than because there are no more
uninfected hosts, which is the phenomenon known as ep-
idemic burnout (Keeling and Rohani 2007).

The fraction of hosts i that remain uninfected after
burnout can be calculated from the implicit equation
(Dwyer et al. 2000; Thieme 2003):

2�1/C

¯Cn
1 � i p 1 � (S(0)i � P(0)) . (12)[ ]m

Mathematically, this result requires that we allow t r

, but as the trajectories in 3A, 3B indicate, in most cases�
the epidemic is over for . In figure 3B, for example,t K �
the epidemic is effectively over by days. For gypsyt p 80
moths and other outbreaking insects, however, larval pe-
riods are typically much less than 80 days (Moreau and
Lucarotti 2007). It therefore seemed likely that the burnout
approximation would provide only a rough description of
epidemic severity in these insects.

To show the effect of epidemic length on the accuracy
of the burnout approximation, in figure 3C we plot the
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Figure 2: Comparison of best-fit model prediction to data from 2008. Points and lines are as in figure 1, and again the vertical axis scales
are different for the two panels. A, Results for 25 cadavers per branch; B, results for 50 cadavers per branch.

cumulative fraction infected i versus host density. Figure
3C also shows the corresponding predictions of equations
(1)–(4), assuming that the epidemic is terminated by pu-
pation either at 250 or at 56 days, with the latter value
appropriate for the gypsy moth. The burnout approxi-
mation is quite close to the 250-day case, but it is quite
far from the 56-day case. It therefore appears that both
pupation and burnout will limit epidemics, at least at low
virus densities.

Figure 3C also roughly illustrates the effect of the disease
threshold, the lowest host density at which a negligible
initial pathogen density, , produces new infectionsP(0) r 0
(Thieme 2003). For equations (1)–(4), the threshold is

, which from our 2008 data is 0.61 larvae m�2. In figure¯m/n
3C, a modest number of infections occur below this
threshold because we have assumed an initial pathogen
population equal to 1% of the host population, a value
that is not that close to 0.

Allowing for both the 2007 and 2008 data, our estimates
of the threshold range from 0.17 to 0.61 larvae m�2 (table
2), whereas the lowest density at which an epidemic has
been observed in nature is roughly 3 larvae m�2 (Dwyer
and Elkinton 1993). Observational studies, however, are

likely to overestimate the population threshold, because
stochastic effects near the threshold will reduce infection
rates (Lloyd-Smith et al. 2005) and because it is difficult
to find enough insects to estimate the fraction infected at
low densities (Woods and Elkinton 1987). Moreover, in
gypsy moths, host and virus densities are positively cor-
related. Indeed, at the lowest density at which an epidemic
has been observed in nature, the cumulative infection rate
was higher than 0.2 even though the initial infection rate
was low, suggesting that such populations are well above
the threshold (Woods et al. 1991). We therefore suspect
that our best threshold estimate of 0.61 larvae m�2 is rea-
sonably accurate.

In figure 3C, we assumed an initial infection rate of 1%
so as not to completely obscure the density threshold, but
epidemics in gypsy moth populations typically begin with
initial infection rates of 10% or more (Woods et al. 1991).
This is important because increasing the initial infection
rate causes the epidemic to burn out more rapidly (fig.
3D), reducing the inaccuracy of the burnout
approximation.

In considering a range of decay rates, we therefore in-
stead assume that the initial pathogen population is equal
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Table 1: Corrected Akaike Information Criterion (AICc) values for the models with
and without decay rates

Year,
decay? Heterogeneity? In-bag decay?

No. parameters
(K) QAICc D QAICc

2007:
No No No 1 89.57 .31
Yes No No 2 90.07 .81
No Yes No 2 91.58 2.32
Yes Yes No 3 92.00 .73
Yes No Yes 3 89.26 0
Yes Yes Yes 4 91.27 2.01

2008:
No No ... 1 108.11 43.85
Yes No ... 2 64.26 0
No Yes ... 2 107.68 43.42
Yes Yes ... 3 66.30 2.04

Note: Values for the best model in each year are in boldface. QAICc p quasi-likelihood AIC.

to 10% of the initial host population. In figure 4, we then
compare our model predictions to the prediction of the
burnout approximation and to the predictions of a model
in which decay is 0 and transmission is terminated only
by pupation. In the figure, we use our point estimates of
persistence from both 2007 (14.3 days) and 2008 (2.56
days), as well as an estimate from the Webb et al. (1999)
data, and a high value of 100 days to allow for a case of
near-zero decay. Because the threshold density changes
with the persistence time, for each persistence time we use
a range of host densities that is scaled to the threshold,
ranging from 0.8 time the threshold to 200 times the
threshold (the panel for 100 days goes to 300# so that
we can see the full range of infection rates). Woods and
Elkinton (1987) observed gypsy moth epidemics at host
densities ranging from 3 to 150 larvae m�2 (0.48–2.2 on
the log10 scale of the graphs), and so only the graph based
on our 2008 estimate (2.56 days, fig. 4C) is centered on
the correct range. For longer persistence times, as for our
2007 data (fig. 4B) or for the comparison plot with per-
sistence time of 100 days (fig. 4A), the infection rate is
too high at the lower range, while for the shorter persis-
tence time of the Webb et al. data (fig. 4D), it is too low
at the higher range. Our estimate of the disease-density
threshold thus again appears to be reasonably accurate,
suggesting that the disease-density threshold is a useful
summary statistic for understanding epidemics in gypsy
moth populations.

To assess the usefulness of the burnout approximation,
we consider how it compares to the predictions of the
realistic model, which includes both pupation and burn-
out. For a persistence time of 100 days, viral decay is low
enough that the realistic model is closest to the pupation-
only model, for which , and very far from the burn-m { 0
out approximation (fig. 4A). For any shorter persistence

time, as in the estimates based on our data or the Webb
et al. (1999) data, the pupation-only model predicts higher
infection rates than the burnout-plus-pupation model or
the burnout approximation. For our best estimate of per-
sistence, from the 2008 data, the realistic model closely
approaches the burnout approximation for densities above
about 10 larvae m�2, but it is well below the burnout
approximation for lower densities (fig. 4C). The burnout
approximation is therefore reasonably accurate for more
than half the realistic range, but it is quite different from
the realistic model at lower densities, suggesting that both
pupation and burnout play a role. In particular, pupation
is probably part of the reason why epidemics have only
been detected at densities considerably higher than the
threshold. The lack of observations of epidemics at lower
densities may therefore be additional evidence that pu-
pation limits epidemics.

Long-Term Dynamics

Figure 5 shows trajectories for the long-term model, in-
cluding the host-pathogen-only model that excludes the
generalist predator and the host-pathogen-predator model.
Both models show cycles that qualitatively match cycles
in nature, which typically show a period of 5–10 years and
an amplitude of 3–5 orders of magnitude (Elkinton and
Liebhold 1990; Johnson et al. 2005). In the host-pathogen-
predator model, the generalist predator interacts with sto-
chasticity to create variability in outbreak timing and in-
tensity (Dwyer et al. 2004).

To see the effects of persistence on outbreak severity,
we consider a wider range of persistence times, using the
amplitude of fluctuations as a measure of outbreak se-
verity. For realistic values of long-term survival g, modest
changes have only slight effects, so we ran the model for
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Table 2: Best-fit model parameter values for our experiments and for the experiments of Webb et al. (1999, 2001)

Field season
Transmission n̄

(m2 day�1)
Decay m

(day�1)
In-bag decay

(day�1)
Heterogeneity

C

Average
persistence

(days)

Population
threshold

(insects m�2)

2007 .24 (.17, .32) .04 (10�8, .093) ... ... 25 (10.7, 107) .17 (10�7, .35)
2007 .28 (.18, .55) .054 (10�7, .13) ... .56 (10�4, 1.67) 18.5 (7.67, 106) .19 (10�7, .33)
2007 .26 (.19, .40) .07 (.03, .11) 10�7 (10�10, .08) ... 14.3 (6.19, 26.6) .27 (.11, .39)
2007 .30 (.20, .67) .07 (.04, .16) 10�8 (10�9, .08) .65 (10�4, 1.67) 14.3 (6.19, 26.6) .24 (.11, .36)
2008 .64 (.54, .79) .39 (.24, .51) ... ... 2.59 (1.94, 3.95) .61 (.41, .81)
2008 .73 (.54, 1.30) .41 (.25, .64) ... .43 (3e-4, .93) 2.43 (1.59, 3.82) .61 (.41, .81)
Webb et al. 1999 1,470 (186, 105) 1.09 (.822, 1.67) ... 2.41 (1.95, 3.05) .91 (.60, .91) NA
Webb et al. 2001 55.9 (36.3, 110) .92 (.83, 8.47) ... 1.01 (.118, 1.21) 1.47 (1.23, 1.65) NA

Note: Note that the transmission parameters for the Webb et al. data depend on a long list of assumptions and thus are not very reliable (see appendix).

For the Webb et al. data, therefore, we do not include an estimate of the threshold. The upper confidence bound on the decay rate for the Webb et al. (2001)

data is also probably unreliable (appendix). NA p not applicable.

wide ranges of m and f while considering only ,g p 0.01
an upper limit based on Podgwaite et al.’s (1979) data,
and . We then iterated the models for 200 genera-g p 0
tions, long enough to eliminate transients, and we cal-
culated the amplitude of fluctuations of host density for
the last 100 generations. We defined the amplitude to be
the difference between the host population density at a
local maximum and the density at the minimum before
the next maximum, with all densities calculated on a log10

scale. For the host-pathogen-predator model, initial con-
ditions can have strong effects, and so for that model we
averaged across initial conditions by drawing initial values
of host and pathogen densities from uniform distributions
that spanned the range of values encompassed by the at-
tractor of each model. We then calculated the average am-
plitude across 10 realizations. Using data from Murray and
Elkinton (1989), we calculated a point estimate and 95%
confidence interval on overwinter survival f, and we used
the confidence interval to bound f (median 7.14, 95%
confidence interval 3.53–23.42; see appendix). To bound
within-season decay m, we used both our 2007 and 2008
estimates and the estimate from the Webb et al. (2001)
data.

Figure 6 then shows that increasing values of overwinter
impact f dramatically increase amplitudes for both mod-
els, as expected, while within-season persistence time

has more complicated effects. For the host-pathogen-1/m
only model, increasing persistence time leads to larger am-
plitudes, but the effect is much stronger as survival time
increases beyond 15 days (about 1.2 on the log10 scale of
our plot). Indeed, for sufficiently high survival times, the
amplitude of fluctuations is so large that the cycles are
unbounded. The effect of within-season survival is thus
counterintuitive, because the model shows that more rapid
breakdown of virus on foliage makes cycle amplitudes
smaller. Smaller-amplitude cycles in turn dampen out-
breaks, reducing the chance that the virus will become

extinct and reducing the need for high values of long-term
survival g. For the host-pathogen-predator model, the ef-
fect of persistence is similar except that the cycles are never
unbounded. Also, for very long persistence times, the cy-
cles are captured by the low-density equilibrium imposed
by the generalist predator, leading to smaller-amplitude
fluctuations.

Cycles in our models occur when the pathogen has a
strong impact on the host for at least 1 year after the host
population has fallen below its peak. Increasing overwinter
impact f therefore leads to larger-amplitude fluctuations
because increasing f increases the severity of the epidemic
in the year following the peak (Dwyer et al. 2000). Re-
ducing the decay rate m also increases the severity of the
epidemic in the year following the peak, because as figure
4 shows, reducing m leads to more severe epidemics at low
host densities. The effect of the decay rate m on epidemics
is thus translated into strong effects on long-term
dynamics.

In both models, survival of virus from the previous
generation, as estimated by the parameter f, appears to
be sufficient to prevent the extinction of the virus even if
longer-term survival . In the more realistic host-g p 0
pathogen-predator model in particular, the virus persists
for the entire range of values of overwinter impact f and
within-season survival m. We therefore argue that covert
infections and soil reservoirs may not be necessary to ex-
plain pathogen-driven outbreaks in the gypsy moth, and
perhaps in other outbreaking insects as well. This is not
to say that covert infections and soil reservoirs never play
a role in the dynamics of baculoviruses but instead that
we may not need to invoke them to explain virus
persistence.

Discussion

Our best estimate of the persistence time of the gypsy moth
baculovirus is less than 3 days. For this value, the burnout
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Figure 3: Predictions of the epidemic-model equations (1)–(4) for parameters estimated from our data. A and B show trajectories for two
different sets of initial host and pathogen densities, one with higher initial host density (A) and one with lower initial host density (B) and
with the initial pathogen population equal to 1% of the host population in both. Cumulative fractions infected: A, 0.918; B, 0.841. Transmission
and decay are estimated from our 2008 data ( m2, day�1), while heterogeneity is from previous experiments ( ;n̄ p 0.64 m p 0.39 C p 1.5
Dwyer et al. 2005). Hatching larvae are assumed to be a fraction of the size of later instar larvae, following an estimate of the number0.02
of occlusion bodies per fourth instar of for fourth instars (Shapiro et al. 1979), and an estimate of ( ) for9 7 72 # 10 3.8 # 10 �0.89 # 10
neonates (G. Dwyer, unpublished data). C, Comparison of the burnout approximation, equation (12), to the burnout-plus-pupation model
for two different times of pupation, 250 and 56 days. D is like B, except that the initial virus density is 10% of the host population.
Cumulative fraction infected p 0.854.
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Figure 4: Comparison of the model that includes burnout and pupation (Burnout � pupation), equations (1)–(4) with zero transmission
after 56 days, to the burnout approximation (Burnout only), equation (12), and a version of equations (1)–(4) in which transmission again
is zero after 56 days but for which decay (Pupation only).m p 0

approximation is quite accurate over much of the range
of densities at which epidemics have been observed, but
it is not very accurate at lower densities. The absence of
epidemics at lower densities in nature therefore appears
to be due to epidemics being curtailed by pupation, and
so it seems likely that in general baculovirus epidemics in
gypsy moths are limited by both burnout and pupation.
We nevertheless argue that the burnout approximation is
useful, first because it is quite accurate at the higher range

of observed densities. Also, long-term models that make
use of the burnout approximation have qualitatively sim-
ilar behavior to the more realistic models that we present
here. In particular, long-term models that use the burnout
approximation also show long-period cycles, and for such
models the cycle amplitude also increases sharply with
increasing overwinter pathogen impact f and declines
modestly with increasing environmental survival g (Dwyer
et al. 2004; Bjornstad et al. 2010). Long-term models that
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Figure 5: Trajectories of the long-term model, equations (9), (10). Here the estimate of the decay rate is , from our 2008 data,m p 0.39
and the overwinter impact parameter , well within the 95% confidence interval for this parameter. Also, we assume that the epidemicf p 15
lasts 2 mo (56 days) after the infected neonates have died. For the host-pathogen-only model, we set predation . For the host-a p 0
pathogen-only model, the remaining parameters are taken from Dwyer et al. (2000): reproductive rate , and heterogeneityl p 5.5 C p

. For the host-pathogen-predator model, the remaining parameters are taken from Dwyer et al. (2004): , ,0.86 l p 74.6 a p 0.967 C p
, and larvae m2.0.97 b p 0.14

make use of the burnout approximation are therefore qual-
itatively useful, especially because they can be understood
more easily (Dwyer et al. 2000).

The prediction of the host-density threshold is also quite
useful. We expect that epidemics in nature will occur at host
densities higher than our best estimate of 0.61 larvae m�2,

and indeed epidemics are typically observed at densities
above 3 larvae m�2 (Woods and Elkinton 1987; Woods et
al. 1991). An interesting feature of this prediction, however,
is that it suggests that insecticidal sprays may be used to
begin epizootics in gypsy moth populations at densities that
are well below outbreak densities (Elkinton and Liebhold
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Figure 6: Effects of virus persistence parameters on outbreak severity. Other parameters are as in figure 5. Shading indicates amplitudes
of fluctuations, such that the darkest represents an amplitude of zero and the lightest represents an amplitude of 7 orders of magnitude.
The upper two plots are for the host-pathogen-only model, and the lower two plots are for the host-pathogen-predator model. For the
two panels on the left, the environmental survival parameter , while for the two on the right, . The error bars on the pointsg p 0 g p 0.01
represent the 95% confidence interval on f in the vertical direction, calculated from Murray and Elkinton (1989), and on persistence time

in the horizontal direction, with data sources for m as labeled. For the host-pathogen-only model, periods greater than 6 generally lead1/m
to unstable oscillations, in which the virus becomes extinct, but for the host-pathogen-predator model the virus always persists.

1990). More generally, our experimental procedure may be
useful in the further development of the virus as a man-
agement tool (Reardon et al. 1996). One of the obstacles
to the development and use of viral sprays is the large-scale
field trials necessary to evaluate transmission efficacy of

different candidate strains (Reardon et al. 1996; Thorpe et
al. 1999). Small-scale transmission experiments might re-
duce the cost of these evaluations by providing a preliminary
screening of virus strains. It is important to emphasize,
however, that using ground-up cadavers instead of purified
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virus is unlikely to be a viable strategy in biological control,
because of regulations about the content of sprays (Hunter-
Fujita et al. 1998).

Because the virus in our long-term models survives in-
definitely even if we allow only for persistence of virus
from the previous generation, we argue that covert infec-
tions and soil reservoirs may not be needed to explain
baculovirus dynamics. As we have described, however, evi-
dence for covert infections in the lab is stronger for at
least a few other insects (Burden et al. 2003, 2006; Kouassi
et al. 2009; Vilaplana et al. 2010) than it is for the gypsy
moth (Myers et al. 2000; Ilyinykh et al. 2004), and so this
conclusion may not be general. An additional caveat is
that our models assume that spatial structure plays little
role. For gypsy moths in North America, this may not be
a bad assumption, because regional weather patterns syn-
chronize populations over large spatial areas (Peltonen et
al. 2002), and allowing for regional weather leads to re-
alistic levels of synchrony in spatial versions of our models
(Abbott and Dwyer 2008). Nevertheless, in 2001–2003, the
third author observed a postoutbreak gypsy moth popu-
lation that persisted at a high density over a small area,
within which virus transmission continued for three larval
seasons after the regional population had crashed (G.
Dwyer, unpublished data). A deeper understanding of
long-term persistence may therefore require field studies
of the importance of spatial structure in populations at
very low densities.

Nothing about our single-epidemic model is specific to
the gypsy moth–baculovirus interaction, to the extent that
similar models are used to describe epidemics of human
diseases (Keeling and Rohani 2007). More concretely, work
in the third author’s lab (G. Dwyer et al., unpublished
data) has shown that the epidemic model provides an
excellent fit to data on baculovirus epidemics in the Doug-
las-fir tussock moth (Shepherd et al. 1984; Otvos et al.
1987), the western tent caterpillar (Beisner and Myers
1999), and the balsam-fir sawfly (Moreau et al. 2005). It
therefore seems likely that baculovirus epidemics in other
outbreaking insects are also limited by pupation. The long-
term models are similarly not specific to the gypsy moth,
in that most outbreaking insects have discrete generations
and transmission in larvae only (Hunter 1991; Dwyer et
al. 2004), as assumed by the models. We therefore argue
that egg-mass contamination and environmental survival
are likely to be sufficient to explain virus persistence in
other insects as well.

A general conclusion of our work is thus that, when
data are collected in the laboratory or under other artificial
conditions, the resulting conclusions may not apply to
transmission in nature (Dwyer et al. 2005). The signifi-
cantly higher decay rate of purified virus (table 2) em-
phasizes this point. A corollary is that estimation of model

parameters from field data can provide useful insights into
host-pathogen dynamics, suggesting that a focus on par-
ticular host-pathogen systems can complement the more
general models that are typical of most studies in theo-
retical ecology. Indeed, tests of theory necessarily require
system-specific experiments, and we therefore believe that
our work usefully illustrates the tension between generality
and specificity in population biology.

Interest in the effects of environmental persistence on
host-pathogen dynamics has been driven by efforts to un-
derstand human diseases such as cholera (Pascual et al.
2002; King et al. 2008) and pandemic influenza (Breban
et al. 2009). Recent work has similarly shown that the
environmental persistence of Metschnikowia pathogens of
Daphnia plays an important role in the dynamics of
Metschnikowia-Daphnia interactions (Hall et al. 2005,
2010; Duffy and Sivars-Becker 2007; Duffy et al. 2010).
Studies of the environmental persistence of baculoviruses
in contrast have a long history (Jaques 1967; Doane 1969),
but a lack of estimates of persistence times has hindered
our understanding of how baculovirus persistence affects
baculovirus dynamics. We therefore hope to have shown
that quantifying persistence times can lead to a deeper
understanding of disease spread.
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APPENDIX

Statistical and Mathematical Details

First we derive the equations used in our statistical anal-
yses. Second, we explain how we analyzed data on virus
decay from previous experiments. Third, we explain how
we scaled transmission rates. Fourth, we present the re-
scaling of the long-term host-pathogen model, equations
(9), (10).

Statistical Analyses of Transmission Experiments, and
Viral Decay Inside Bags

In our experiments, the virus is allowed to decay for T
days before transmission starts. Decay then ceases and
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there is no further change in the pathogen population. If
is the density at the end of the decay period, we canP(0)

rewrite equation (1) for the host population as
2C

dS S(t)
�mT¯p �nSP(0)e . (A1)( )dt S(0)

This equation can be integrated to give the model equation
that we use in our statistical analyses:

ˆS(t) 22 �mT �1/Cˆ¯p (1 � nC P(0)e t) . (A2)
S(0)

For the case of no heterogeneity in infection risk, we set
in equation (A1):C p 0

dS
�mTp �nSP(0)e . (A3)

dt

We again integrate to find

ˆS(t)
�mTˆp exp (�nP(0)e t). (A4)

S(0)

So far we have assumed that there is no viral decay inside
the mesh bags. To fit a model with decay inside the bags,
we define to be the decay rate inside the bag and tom m1 2

be the decay rate outside the bag. Because there is no ad-
dition of virus, equation (4) for the infectious-cadaver pop-
ulation becomes

dP
p �m P, (A5)1dt

which has solution . We then insert this�m t1P(t) p P(0)e
solution into the host equation (1):

2C

dS S(t)
�m t �m T1 2¯p �nSP(0)e e , (A6)( )dt S(0)

Integrating and rearranging in terms of the fraction un-
infected gives

2�1/C
ˆ�m t1ˆS(t) 1 � e

2 �m T2¯p 1 � nC P(0) e . (A7)( )S(0) m1

Estimating the Virus Decay Rate from Previous
Experiments and Estimating an Egg-Mass

Contamination Rate

We first explain why estimating decay rates from experi-
ments with only one virus dose is not statistically feasible
using standard models. For analyzing dose-response ex-
periments with baculoviruses, the standard approach is to
use logistic regression, which means using a generalized
linear model with link logit, also known as a logit model,

with the log-transformed dose as the independent variable
(Morgan 1992). To allow for virus decay, we therefore use
a logit model, except that we multiply the dose by an
exponential decay term:

1
p p . (A8)i, j �mtj1 � exp [�b � b log (D e )]0 1 10 i

Here is the probability of infection at dose at timep Di, j i

after the application of the virus, and are parameterst b bj 0 1

describing the increase in the infection rate with increasing
dose, and m is again the decay rate of the virus. In using
the phrase “standard model,” we therefore mean that we
began with a model that is usually used to analyze labo-
ratory dose-response transmission experiments, and then
we extended it to allow for virus decay.

It turns out, however, that we cannot estimate in-b1

dependently of m in this model because of a problem
known in statistics as “nonidentifiability.” To show this,
we first solve for the logit-transform of the data:

pi, j �mtjlog p �b � b log (D e ). (A9)0 1 10 i( )1 � pi, j

We then rearrange the right-hand side to give

pi, jlog p �b � b log D � b mt . (A10)0 1 10 i 1 j( )1 � pi, j

If there is only one dose, then the dose is a constant,
, and we can define new parameters ˆD { D b { b �i 0 0

and . We can therefore rewrite theˆb log D b { b m1 10 1 1

model to only include two parameters, and . In short,ˆ ˆb b0 1

if there is only one dose, it is not possible to separately
estimate and m, even if the exposure time is variedb t1 j

experimentally. Note that Sun et al. (2004) avoided this
problem by estimating and from laboratory dose-b b0 1

response data, and then back-calculating from the fraction
infected in their data to estimate viral population densities
in the field. It appears to be the case, however, that they
used only the point estimates of and in their cal-b b0 1

culations of viral population densities. If so, the standard
errors on their estimates of viral half-lives (Sun et al. 2004,
p. 190, their table 1) are probably underestimates.

The underlying problem is the log-transformed dose
term. Although log transformation allows a better fit to
baculovirus dose-response data, to our knowledge there is
no mechanistic explanation for why this is so. This is
relevant because although a different model might not
have this problem, without a deeper understanding of the
mechanisms underlying the infection process within an
insect, we are in no position to propose a new and better
model. The models for our field-transmission experiments
do not have this problem, but they assume that larvae are
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allowed to feed at will on foliage in the field, whereas in
the experiments in question, larvae were fed contaminated
foliage in the laboratory, and larvae that did not consume
the entire dose were discarded. We therefore do not at-
tempt to find a better model with which to analyze this
type of data.

We instead restrict ourselves to experiments that used
multiple doses and multiple exposure times. To our knowl-
edge, the available data then include only the experiments
of Jaques (1968, 1972) on the nucleopolyhedrovirus of the
cabbage looper Trichoplusia ni, feeding on cabbage, and
experiments by Webb et al. (1999, 2001) on the nucleo-
polyhedrovirus of the gypsy moth, feeding on oaks (Quer-
cus species). As we mentioned, in all these experiments
the virus was added to the foliage in the form of a spray
of purified virus. Analyses of the data, whether verbal in
the earlier Jaques’ studies, or statistical in the Webb et al.
studies, then focus on the effects of dosage (Jaques 1968)
or on the effects of adding different compounds to the
virus spray, such as yeast (Jaques 1972), the optical bright-
ener blankophor BBH (Webb et al. 1999), or a virus of
another insect (Webb et al. 2001). Because we are inter-
ested in comparisons to natural decay, in reanalyzing these
data, we use only data based on either virus in water
(Jaques data) or virus in water plus 2% bond sticker (Webb
et al. data).

In the Jaques studies, the data are simple fractions of
the number of larvae exposed to the virus, and so we
assumed a binomial likelihood function (McCullagh and
Nelder 1989). We then fit the parameters , , and m tob b0 1

the data using maximum likelihood, using the nonlinear
search routine optim in the R programming language to
find the best parameters (R Development Core Team
2009). The best-fit versions of the model are shown for
each data set in figure A1. As the figure shows, in general
the model does a reasonable job of reproducing the data,
but calculation of a variance-inflation factor indicates that
there is a systematic lack of fit (variance inflation 14) in
three of four cases. Visual inspection of the fit of the model
to the data, however, does not reveal any obvious or sys-
tematic discrepancies, and so in the absence of further
knowledge, tweaking the model to improve the fit seems
ill advised. We therefore simply report the best-fit param-
eter values and the variance-inflation factors (table A1).
Note that the persistence times are lower than our esti-
mates for the gypsy moth virus, but it is impossible to say
whether this is due to differences in the host-virus system
or to the use of purified virus.

For the Webb et al. data, larvae were allowed to feed
on virus-contaminated foliage in the field, as in our ex-
periments. We therefore again used the field-transmission
equation (7) to analyze the data. In this case, however, the
data consist of the mean and the standard error of the

fraction infected, calculated over replicates, with each rep-
licate equal to a branch (1999, eight replicates; 2001, 10
replicates). For the 2001 data in particular, the data are
analyzed in such a way that treatment-specific standard
errors are only reported for the highest of the three virus
densities. Trying a range of standard errors for the lower
densities suggested that the upper confidence bound on
the decay rate is very sensitive to these standard errors,
even though the lower confidence bound is not, so in
general we focus on the 1999 data.

Because we do not have the original data, we calculated
a likelihood score for each parameter set by integrating
over the variance in the data, as represented by the re-
ported standard errors. The idea behind this approach is
that we treat the variance in the data as a nuisance pa-
rameter, which we eliminate using integration (Berger et
al. 1999). Conceptually, the integral can be written as

L(v) p L(v, x)f(x)dx, (A11)�
where L is the likelihood, v is a vector of model parameters,
x is the data, and is the probability density functionf(x)
of the data. In practice, we cannot directly solve this in-
tegral, but we can approximate it numerically by drawing
samples from the probability density function of the data
and calculating the average likelihood across samples. For
a large enough sample, this average likelihood will closely
approximate the integral (Ross 2002).

To explain how we carried out this procedure, we define
r to be the number of replicates in each treatment in the
experiment. We then first drew r values of the fraction
infected for each treatment from a normal distribution
with the same mean and standard deviation as the data
for that treatment, and we calculated the mean and the
standard error for this sample. In general, the standard
errors were small enough that we almost never drew neg-
ative values, except for a few cases which we set to 10�10,
but increasing this latter number to 10�3 had negligible
effects. Using a lognormal distribution in contrast led to
very large confidence bounds. A complete sample then
consisted of a set of treatment-specific means and standard
errors. We then drew 25 new samples using these calculated
means and standard errors, and we fit the model to the
25 samples. Repeating this process 500 times gave us a
distribution of values for each parameter, from which we
calculated a median and 95% confidence interval for each
parameter. As with the Jaques (1967, 1972) data, we cal-
culated variance inflation factors to assess the goodness of
fit of the model (Burnham and Anderson 2002). Doing
so meant multiplying the number of insects per sample
(10 in all cases) times the fraction infected for each boot-
strapped sample. The variance inflation factor was less than
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1 for every sample for the 1999 data, and figure A2 con-
firms that the model provides a reasonable fit to each data
set. For the 1999 data, we also fit a model with hetero-
geneity , but its AIC score was 60 units larger, soC p 0
we report only the results for the model with .C 1 0

To estimate the overwintering parameter f, we basically
performed the same procedure, using the data of Murray
and Elkinton (1989). These data give the fraction of larvae
hatching infected from eggs laid at sites with different
infectious-cadaver densities. Because the data include es-
timates of the virus densities, it is possible to estimate the
rate of increase of the fraction infected with virus density.
We can then use the data to estimate the overwintering
impact parameter f, which replaces in equation (A3).�mTn̄e
Note that f thus includes both hatchling susceptibility and
virus survival over the winter. A crucial point is that, for
each bootstrapped sample, we drew values both for the
fraction of larvae infected, the dependent variable, and for
the density of virus, the independent variable. Figure A3
shows the data and the best-fit version of the model. The
high uncertainty in the virus density, as indicated by the
large horizontal error bars on the higher density, probably
makes the largest contribution to the large confidence in-
terval on f. Reassuringly, however, again the variance-
inflation factor was less than 1 for all samples. Also, a
model with no host heterogeneity, such that , ex-C p 0
plained the data much more poorly than did the model
that assumed , with a difference in AIC scores forC 1 0
the two models of 35.

Scaling Transmission Rates. To accurately calculate the dis-
ease-density threshold, we must properly scale the trans-
mission parameter . To begin with, this means allowingn̄

for the average area of a leaf, which we take to be
m2 based on an earlier study with the same�35.54 # 10

methodology using trees in the same patch of forest
(Dwyer et al. 2005). In addition, in the single-epidemic
model equations (1)–(4), cadaver density is defined in
terms of fourth-instar cadavers. Because we used neonate
cadavers in our experiments, we converted the hatchling
cadaver density into the equivalent fourth-instar cadaver
density by multiplying the cadaver density by , the0.002
ratio of the number of occlusion bodies in first (G. Dwyer,
unpublished data; also see the legend for fig. 3 in the main
text) versus fourth-instar cadavers (Shapiro et al. 1979).

Carrying out the equivalent scaling for the Webb et al.
(1999, 2001) data is more difficult, because important de-
tails are not listed in the original articles. In particular, we
do not know the leaf area in a bag, nor do we know the
amount of virus solution sprayed on the leaves. Because
the experiments are described as being motivated by ex-
periments of D’Amico and Elkinton (1995) that were sim-
ilar in methodology to our experiments, we assumed the

same leaf area per bag. Because the leaves were sprayed
until the solution was running off the leaves, we assumed
that the amount of virus solution sprayed was 500 mL.
The roughness of these guesses, however, suggests that our
estimates of transmission from the Webb et al. data aren̄

unreliable.

Rescaling the Multi-Generation Model. Here we rescale the
multi-generation model. For convenience, we show the
model again. First, the epidemic model is

2C

dS S(t)
¯p � nSP , (A12)( )dt S(0)

2C

dE S(t)1 ¯p nSP � mdE , (A13)1( )dt S(0)

dEi p mdE � mdE (i p 2, … , m), (A14)i�1 idt

dP
p mdE � mP. (A15)mdt

The long-term model is

abNnN p lN (1 � i(N , Z )) 1 � , (A16)n�1 n n n 2 2( )b � Nn

Z p f N i(N , Z ) � gZ . (A17)n�1 n n n n

To connect the two models, we set the initial densities of
hosts and cadavers to be

S(0) p N , (A18)n

P(0) p hZ , (A19)n

where h allows for the higher susceptibility of hatching
larvae, which die and produce infectious cadavers that start
the epidemic (Dwyer et al. 2000). We next define the frac-
tion infected in the epidemic as

S(T)
i(N , Z ) p 1 � . (A20)n n Nn

Here is the density of uninfected hosts at the end ofS(T)
the epidemic, so that T is the duration of the epidemic.

To rescale these equations, we multiply almost all the
state variables by the transmission rate , except that wen̄

multiply the infectious-cadaver population by :¯Z hnn

ˆ ˆ ˆ¯ ¯ ¯S { nS(t), E { nE (t), P { nP(t), (A21)i i

ˆˆ ¯ ¯N { nN , Z { nhZ (A22)n n n n

ˆ ¯f { fh, b { bn. (A23)
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The model then becomes
2C

ˆ ˆdS S(t)ˆ ˆp � SP , (A24)( )ˆdt S(0)
2C

ˆˆdE S(t)1 ˆ ˆ ˆp SP � mdE , (A25)1( )ˆdt S(0)

ˆdEi ˆ ˆp mdE � mdE (i p 2, … , m), (A26)i�1 idt

ˆdP ˆ ˆp mdE � mP. (A27)mdt

ˆ ˆabNnˆˆ ˆ ˆN p lN (1 � i(N , Z )) 1 � , (A28)n�1 n n n 2 2ˆ( )ˆb � Nn

ˆ ˆ ˆˆ ˆZ p fN i(N , Z ) � gZ . (A29)n�1 n n n n

ˆ ˆ ˆˆ ˆZ p fN i(N , Z ) � gZ . (A30)n�1 n n n n

ˆ ˆS(0) p N , (A31)n

ˆP̂(0) p Z , (A32)n

Ŝ(T)ˆˆi(N , Z ) p 1 � .n n N̂n

The rescaling thus eliminates from the equations andn̄

replaces the parameters h and f with their product f. Also,
the density b at which predation is maximized becomes

.b̂
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Figure A1: Best-fit logit-decay model, equation (A8), compared to data from Jaques (1967, 1972).
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Figure A2: Best-fit field-transmission model compared to data from Webb et al. (1999, 2001). Doses are in terms of occlusion bodies per
378 L (100 gal).
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Figure A3: Best-fit transmission model compared to data from Murray and Elkinton (1989). Although Murray and Elkinton (1989) include
several different experimental treatments, to avoid artifacts we restricted ourselves to egg masses laid naturally at a given site.

Table A1: Best-fit values of the parameters of the logit-decay model, equation (A8),
as fitted to data from Jaques (1967, 1972)

Data set b0 b1 Decay rate m

Average survival
(days)

Variance
inflation

Jaques 1967 �10.4 1.62 .516 1.94 488
Jaques 1972, 1968 �4.88 1.13 .731 1.37 3.10
Jaques 1972, 1969 �8.04 1.37 .984 1.02 8.87
Jaques 1972, 1971 �1.73 .391 1.34 .746 5.08
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