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abstract: Pathogen population dynamics within individual hosts
can alter disease epidemics and pathogen evolution, but our under-
standing of the mechanisms driving within-host dynamics is weak.
Mathematical models have provided useful insights, but existing
models have only rarely been subjected to rigorous tests, and their
reliability is therefore open to question. Most models assume that
initial pathogen population sizes are so large that stochastic effects
due to small population sizes, so-called demographic stochasticity,
are negligible, but whether this assumption is reasonable is unknown.
Most models also assume that the dynamic effects of a host’s immune
system strongly affect pathogen incubation times or “response times,”
but whether such effects are important in real host-pathogen inter-
actions is likewise unknown. Here we use data for a baculovirus of
the gypsy moth to test models of within-host pathogen growth. By
using Bayesian statistical techniques and formal model-selection pro-
cedures, we are able to show that the response time of the gypsy
moth virus is strongly affected by both demographic stochasticity
and a dynamic response of the host immune system. Our results
imply that not all response-time variability can be explained by host
and pathogen variability, and that immune system responses to in-
fection may have important effects on population-level disease
dynamics.

Keywords: within-host model, speed-of-kill, demographic stochastic-
ity, baculovirus.

Introduction

An understanding of within-host pathogen growth is crit-
ically important for predicting and responding to disease
outbreaks, but achieving such an understanding is difficult
without mechanistic mathematical models. The develop-
ment of models of within-host population growth is there-
fore an important area of current research (Alizon and
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van Baalen 2008), but few existing models have been for-
mally tested, and so their reliability is unknown. Here we
use experimentally collected time-to-death data to test
models of within-host pathogen growth for an insect virus
by comparing the ability of different models to explain the
time that it takes the virus to kill infected hosts.

Most within-host pathogen growth models are aimed
at understanding the fluctuations in pathogen density that
occur during chronic or acute infections (Antia et al. 1994;
Alizon and van Baalen 2008; King et al. 2009). These fluc-
tuations are often described using deterministic models,
because deterministic models can be easily analyzed. An
important assumption made by deterministic models is
that pathogen populations are so large that there are no
effects of demographic stochasticity, the variability in pop-
ulation growth that results from the timing of chance
events such as reproduction or death (Borsuk and Lee
2009). A growing body of theoretical literature, however,
suggests that stochastic events are important (Michael et
al. 1998; Grant et al. 2008; Vaughan et al. 2012), suggesting
in turn that deterministic models are insufficient for de-
scribing these dynamics.

Variability in susceptibility between hosts that results
from differences in host genetics or condition is known
to cause variation in within-host pathogen dynamics (van
der Werf et al. 2011). Circumstantial evidence from the
empirical literature, however, suggests that demographic
stochasticity may also play an important role. First, the
symptoms of many diseases only appear after relatively
long incubation periods, suggesting that initial pathogen
population sizes are small (Moury et al. 2007; Zwart et al.
2009a). Second, there is often high variability across hosts
in within-host pathogen dynamics, even when pathogens
are grown in closely related hosts under identical condi-
tions (Mideo et al. 2008; Zwart et al. 2009a). Demographic
stochasticity may therefore be an important source of var-
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iability in growth rates. What is needed then, is a formal
test of whether models that allow for demographic sto-
chasticity provide a better explanation for pathogen
growth than do models that allow only for variability be-
tween hosts. Quantifying pathogen numbers within hosts
when pathogen population sizes are small is often impre-
cise (Chandler 1998), but it is when population sizes are
small that the effects of demographic stochasticity are most
likely important. We therefore instead use incubation time
data to test for the importance of demographic stochas-
ticity. Our model-fitting procedure shows that demo-
graphic stochasticity does indeed play a crucial role in
within-host pathogen growth.

Efforts to use stochastic models to make inferences
about mechanisms determining pathogen population
growth have a long history (Shortley 1965; Shortley and
Wilkins 1965; Chang 1970). Early efforts estimated pa-
rameters using data on a disease’s incubation period or
“response time,” the time between infection and the ap-
pearance of disease symptoms. This work, however, was
based only on “birth-death” models, which assume that
per capita pathogen clearance rates are constant. In many
organisms, however, pathogen clearance rates instead
change over time because of changes in the immune sys-
tem during the period of infection. Because birth-death
models do not allow for such dynamic changes in the
immune system, they generally provide a poor fit to data
(Armitage et al. 1965; Williams and Meynell 1967; Schach
and Schach 1970).

More recent stochastic models have instead often in-
cluded immune system dynamics, usually to describe HIV
growth, and have compared model predictions either to
patterns in within-host pathogen dynamics (Chao et al.
2004; Lin and Shuai 2010; Conway and Coombs 2011;
Vaughan et al. 2012), or to changes in within-host path-
ogen diversity (Woo and Reifman 2012). Comparisons to
data, however, have been carried out only for the purposes
of qualitative model validation, not for parameter esti-
mation or model comparison. Other researchers have in-
stead neglected the dynamic effects of the immune system
but have avoided poor fits to data by applying their models
only to the first few days of infection, before the immune
system has begun to have much effect. This latter approach
requires reduced computing resources, and it has therefore
been straightforward to compare models to data, using
data on multiplicity of infection (Brown et al. 2006) or
changes in pathogen diversity (Grant et al. 2008) in mice
infected with typhoid (Salmonella enterica).

Nevertheless, neither approach directly addresses the
questions prompted by Shortley’s work: does demographic
stochasticity affect response times, and are response times
affected by immune system dynamics? Answers to these
questions are crucial for the further development of the-

ories of the evolution of virulence, because response time
is a key component of pathogen fitness (May and Ander-
son 1983). We therefore combined recent approaches, fol-
lowing the lead of HIV researchers in using models that
allow for immune system dynamics and following the lead
of mouse-typhoid researchers in using model-selection
procedures to formally choose between models. To meet
the significantly greater computing requirements of our
models, we used a highly parallel computing environment,
and we developed a new form of Markov chain Monte
Carlo algorithm that takes advantage of this environment
(Kennedy et al. 2014b). Because response-time data are
sometimes insufficient to choose between models (Morgan
and Watts 1980), we constrained the values of some pa-
rameters by using previously collected experimental data,
while estimating other parameters directly from response-
time data.

The baculovirus that we study is a nucleopolyhedrovirus
of the gypsy moth, Lymantria dispar. Because baculoviruses
are directly transmitted, fatal, and usually either species-
specific or with narrow host ranges, they are widely used
as environmentally benign insecticides (Moreau and Lu-
carotti 2007). In baculoviruses, response time is effectively
equivalent to speed of kill, an important measure of ef-
ficacy when baculoviruses are used as insecticides. Our
efforts to understand response times may therefore be
helpful in efforts to use baculoviruses in pest management.
Previous efforts to make inferences about mechanisms of
baculovirus growth have in contrast used deterministic
models (van Beek et al. 1988a), which often ignore rela-
tionships between speed of kill and probability of death,
thereby requiring two separate models to analyze speed of
kill and percent mortality. Our approach in contrast relates
a particular baculovirus dose to both speed of kill and
percent mortality, thereby using a single model to draw
inferences from both types of data.

Methods

Study System

The gypsy moth is an invasive pest in North America that
causes economic damage by periodically defoliating hard-
wood trees (Elkinton and Liebhold 1990). As in many
forest insects, gypsy moth outbreaks are partly driven by
a species-specific baculovirus, the Lymantria dispar nu-
cleopolyhedrovirus (Dwyer et al. 2004). This virus is also
used in gypsy moth control (Webb et al. 1999), but the
evolutionary consequences of virus application are un-
known. Because within-host pathogen growth is a crucial
element in virus evolution, one of our aims is to develop
a reliable model of within-host dynamics that can be used
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Mechanisms of Within-Host Virus Growth 409

to understand the evolutionary consequences of microbial
control programs.

Baculovirus infection begins when a larva consumes fo-
liage contaminated by infectious particles or “occlusion
bodies” released from the cadaver of a virus-killed con-
specific (Cory and Myers 2003). In the alkaline environ-
ment of the gut, the pH-sensitive, outer protein coat dis-
solves (Adams and McClintock 1991). Viral proteins called
“enhancins” then increase the permeability of the peri-
trophic membrane of the insect gut (Wang and Granados
1997; Peng et al. 1999), allowing virions to bind to epi-
thelial cells of the midgut (Horton and Burand 1993).
Infection is thus associated with damage to the peritrophic
membrane (Rohrmann 2008), and so gut-cell sloughing
increases as a response to virus challenge (Washburn et
al. 2001). Larvae have many midgut cells (Baldwin and
Hakim 1991), and so the number of suitable binding sites
probably does not impose a severe limitation on midgut
cell infection (van Beek et al. 1988a). Increased rates of
cell sloughing, however, may nevertheless lead to a non-
linear relationship between pathogen dose and the number
of particles that successfully invade a host.

In infected midgut cells, virions bud from the cell
membrane and enter the tracheal system, at which point
systemic spread begins (Adams and McClintock 1991).
Through the tracheal system, virions gain access to the
hemolymph, where a particular virion’s fate depends on
whether it first comes into contact with a host immune
cell or with a host cell suitable for replication. If a virion
contacts a host immune cell, or “hemocyte,” it is bound
to the hemocyte (Washburn et al. 1996; Schmid-Hempel
2005; McNeil et al. 2010), an event that initiates a phenol-
oxidase cascade that destroys the virion and renders the
hemocyte inactive (Ashida and Brey 1998; Trudeau et al.
2001). Interactions between virions and immune cells thus
result in the destruction of both the virion and the immune
cell. If a virion instead encounters a cell suitable for rep-
lication, it enters the cell and moves to the nucleus, where
it begins to replicate (Rohrmann 2008). Newly formed
virus particles then bud and detach from the cytoplasmic
membrane of the cell, which allows them to find new cells
to infect (Adams and McClintock 1991; Slack and Arif
2006). An important point is that insect immune systems
lack clonal reproduction (Vilmos and Kurucz 1998), and
so over the course of an infection, hemocytes likely become
depleted. The depletion of these hemocytes thus results in
a decline in the effectiveness of the immune system over
time.

Some exposed larvae are able to clear all of the virions
from their system and recover (Washburn et al. 1996), but
in others, virion number increases from the presumably
small number of particles consumed to a very large num-
ber, roughly particles in the fourth-instar larvae92 # 10

(“instar” p larval developmental stage) that we use here
(Shapiro et al. 1986). Though the precise mechanism that
causes death is unknown, nearly all internal host tissue is
converted into a virus-rich, fluid-like substance that pours
out of larvae on rupture of the host integument by the
action of viral encoded chitinases and cathepsins (Hawtin
et al. 1997). The virus occlusion bodies are then available
to infect additional larvae (Elkinton and Liebhold 1990).

Data Collection

To collect speed-of-kill data, we used egg masses from the
New Jersey standard strain of gypsy moths (USDA-APHIS,
Otis, MA), which are of low heterogeneity in susceptibility
(Dwyer et al. 1997). Using this strain reduced differences
between hosts, aiding our effort to determine whether de-
mographic stochasticity is important to host response
times. Because this population nevertheless includes at
least modest variability between individuals, we included
variability between individuals in our models.

Larvae were reared according to standard rearing pro-
tocols (app. A, “Rearing Methods”; apps. A and B available
online). Fourth-instar larvae were then used in a “diet-
plug” bioassay (Hughes and Wood 1986; Dwyer et al. 1997;
Li and Bonning 2007) to determine mortality and speed
of kill at five virus doses (app. A, “Bioassay”).

Model Construction

Because there is already an extensive literature on bacu-
lovirus pathogenesis, the goal of our model-fitting was not
to identify novel mechanisms but instead to determine
which known mechanisms have detectable effects on re-
sponse times. Our statistical approach to solving this prob-
lem was to fit a range of different models to the data and
to use formal model-selection criteria to choose the model
that best explains the data.

Baculovirus biology suggests that the number of virus
particles that initiates infections is probably small (Zwart
et al. 2009a, 2009b), and so we used probabilistic models
that inherently allow for demographic stochasticity. The
models track the replication and destruction of virions, as
well as the immune cells that are destroyed along with the
virions. Our most complex model is then
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Table 1: List of the parameters, and parameter descriptions con-
tained in the models

Parameter Parameter description

b Immune cell attack rate
f Virus growth rate
c1 Virus establishment asymptote
c2 Virus establishment half-saturation

constant
m Median initial immune cell number
jm Scale parameter of initial immune cell

number
N Median threshold for host response
jN Scale parameter of threshold for host

response
K Virus carrying capacity

dpx,y p b p � d px�1 x�1,y x�1,y�1 x�1,y�1dt

� (b � d )p , (1)x x,y x,y

x
fx 1 � if x p 1, 2, … , x � 1T( )ˆb p , (2)K{x 0 otherwise

bxy if x p 1, 2, … , x � 1Td p , (3)x,y {0 otherwise,

1 if x p x and y p y0 0p (0) p . (4)x,y {0 otherwise

Here px,y is Prob(X(t) p x, Y(t) p y), where x p 0, 1,
2, ... , xT , and y p 0, 1, 2, ... , y0. Term X(t) is the number
of virions, and Y(t) is the number of immune cells at time
t. Term xT is the threshold number of virus particles at
which host death occurs, and y0 is the initial number of
immune cells in the host. Virus replication bx then follows
a logistic-growth model, with intrinsic rate of increase f

and carrying capacity . In practice, it is convenient toK̂
express as xTK so that we instead estimate K, which isK̂
the extent to which the carrying capacity exceeds the host-
death threshold xT . Note that the model assumes host
death occurs when the virus population reaches xT , but
the assumption does not require that reaching xT is the
cause of death. Virus removal dx,y depends on the mass-
action term bxy, where b is the rate at which virus-
destruction events occur. We thus follow standard immune
system models in assuming that virus-immune cell inter-
actions can be modeled as predator-prey interactions, with
the virus acting as the prey and the immune cell acting
as the predator (Alizon and van Baalen 2008). An im-
portant difference from previous models, however, is that
we assume that immune cells do not reproduce, to reflect
the fact that insect hemocytes do not undergo clonal se-
lection (Vilmos and Kurucz 1998). Nevertheless, because
the model includes changes in the number of immune
cells, it allows for a dynamic immune response.

The initial virus population size x0, the threshold virus
population size for host death xT , and the initial immune-
cell population size y0 are likely to vary among insects,
and we therefore treat them as random variables. Prelim-
inary results indicated that the initial virus population that
actually established inside an insect was a saturating func-
tion of the applied dose. Because randomness is introduced
during the process of virus establishment, we described
this initial population using a Poisson distribution with
parameter c1D/(c2 � D), such that D is dose and c1 and
c2 are estimated parameters that account for the dose-
saturation effect. Specifically, c1 is the saturation value of
the initial virus population, and c2 is the dose at which
half of the saturation value is reached.

To allow for variability between individuals, we assumed
that the initial immune cell population y0 and the threshold
population size for host death xT followed lognormal dis-
tributions, with medians and variances estimated from the
data. Lognormal distributions allow for separate adjust-
ment of medians and variances while constraining the var-
iables to be positive. Allowing for a nonzero variance in
the number of immune cells is especially important, be-
cause it allows us to incorporate the effects of variability
between hosts in immune system strength. The boundary
conditions are thus

c D1x ∼ Poisson , (5)0 ( )c � D2

2y ∼ log � N(ln (m), j ), (6)0 m

2x ∼ log � N(ln (N), j ). (7)T N

Note that in the above equations, we distinguish be-
tween the parameter m, which is the median initial number
of immune cells in a host, and the state variable y0, which
is the realized initial number of immune cells. We similarly
distinguish between the median threshold virus population
at which a host dies N and the realized threshold xT . These
distinctions allow us to include the effects of stochastic
variation between hosts in the initial number of immune
cells and the threshold virus population size. All model
parameters are listed in table 1.

Our candidate models are then derived as follows. First,
our most complex model (M1) is given by equations (1)–
(7). Second, to produce a model in which host resources
do not limit pathogen growth, we assumed that the virus
carrying capacity is much greater than the threshold for
host response ( ), so that there is no effect of re-K̂ k xT

source depletion on pathogen growth. This causes the lo-
gistic terms to disappear from equation (2). We call this
the “no-carrying-capacity” model (M2). Third, to produce
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a linear birth-death model, we began with M2 and we
additionally fixed the number of immune cells yt at y0 for
all t, so that the death rate is set to the constant value by0.
Note that this model was first introduced by Shortley
(1965), and so we call this the “Shortley birth-death”
model (M3) (Chang 1970; Ercolani 1985). Fourth, by re-
parameterizing M1 according to and by assum-ĉ p c /c1 1 2

ing that dose D K c2, we produce a model in which virus
establishment is a linear, nonsaturating function of dose.
In practice, this is equivalent to rewriting equation (5) as

. We call this the “linear virus coloni-ˆx ∼ Poisson(c D)0 1

zation” model (M4). Fifth and sixth, we remove variability
between hosts in immune system strength and in the
threshold for response, respectively, by setting jm and jN

to 0. These changes, in effect, replace equations (6) and
(7) with, respectively, y0 p m and xT p N. We call these
latter two models the “identical immune system” (M5)
and “identical response threshold” (M6) models, respec-
tively. Seventh, we note that models including demo-
graphic stochasticity can be closely approximated by cor-
responding ordinary differential equation models, when
population sizes are large (Renshaw 1991). We therefore
constructed a model with no demographic stochasticity by
assuming that virus population sizes are large enough to
be tracked as continuous rather than discrete values. We
then rewrite the probabilistic model as a set of differential
equations, as in van Beek et al. (1988a). We call this the
“no-demographic-stochasticity” model (M7). We empha-
size, however, that this latter model does include stochas-
ticity in the form of stochastic differences between hosts
in immune system strength and the threshold for response.
Transition probabilities for each of these models can be
found in figure 1.

Our main goal in fitting models to data was to infer
the importance of different mechanisms in determining
pathogen growth within hosts. We therefore compared the
ability of our competing models to explain the data, such
that the best model included only those mechanisms that
could justifiably be included given the data. Although
equations (1)–(7) include effectively every mechanism hy-
pothesized to affect within-host dynamics of baculoviruses,
it is possible that the effects of one or more of these mech-
anisms are weak enough that they can be neglected. Be-
cause we considered not just the most complex model but
simpler models that successively left out mechanisms, we
were able to quantify the importance of each mechanism
(Burnham and Anderson 1998).

Bayesian Inference

We analyzed these models in a Bayesian statistical frame-
work (Kennedy et al. 2014a; see app. A, “Fitting the Models
to Data” for details), and we then compared our competing

models using the deviance information criterion or DIC
(Spiegelhalter et al. 2002). Smaller DIC values imply better
models, and so if the DIC score of a simpler model is larger
than that of a more complex model, the mechanism missing
from the simpler model is likely to be important in un-
derstanding speed of kill. To aid in these comparisons, we
present the DDIC score of each model, which is the differ-
ence between a model’s DIC score and the DIC score of
the best model. There is no absolute cutoff for DDIC scores
such that one model can be outright rejected in favor of
another, but a rule of thumb proposed by Burnham and
Anderson (1998) for interpreting differences in the Akaike
Information Criterion (AIC) appears to work well for DIC
as well (Spiegelhalter et al. 2002; Bolker 2008). According
to this rule of thumb, a model with DDIC of !2 has sub-
stantial support, a model with DDIC between 3 and 7 has
considerably less support, and a model with DDIC 110 has
very little support.

A crucial feature of DIC is that it allows us to include
information from other data sets in model selection. This
is important because estimating some of the model pa-
rameters from response-time data alone is very difficult
(Morgan and Watts 1980). For example, unreasonably low
estimates of the median threshold population size N can
produce reasonable speeds of kill if the estimate of the
virus growth rate parameter f is also very low. Shapiro et
al. (1986), however, directly counted occlusion bodies to
estimate that, for the developmental stage of the insects
that we use here, N p 2.05 # 109 � 0.22 # 109, which
we used to construct a prior distribution on N. We likewise
used literature data to include such information in the
priors of many of the model parameters (app. A, “Prior
Construction”), an increasingly common practice in eco-
logical modeling (McCarthy and Masters 2005; Elderd et
al. 2006; Bolker 2008).

The resulting posterior distribution includes informa-
tion from our priors as well as information from our re-
sponse-time data (Gelman et al. 2004). As we explain in
more detail in appendix A, “Prior Construction,” however,
our priors serve mostly to constrain parameters away from
biologically unrealistic values such as extremely low me-
dian threshold pathogen population sizes N and extremely
low pathogen replication rates f. Our informative priors,
specifically for the threshold pathogen number at which
death occurs N, the number of pathogen particles that
cross the gut barrier c1/(c2 � 1), and the pathogen repli-
cation rate f are based on reliable data. Moreover, our
main conclusions are not based on parameter estimates
but are instead derived from model comparisons. By con-
straining our parameter estimates to biologically realistic
values we ensure that our models are reasonable descrip-
tions of pathogen growth in insect hosts, which in turn
improves the reliability of our conclusions.
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Figure 1: Models considered. The most complex model (M1) contains all of the mechanisms hypothesized to be important for baculovirus
growth in gypsy moth hosts. All other models are nested versions of this model, with the additional assumptions listed in the “Assumptions
beyond model M1” column. Differences between M1 and all other models are shown either in boldface, representing a changed term, or
in gray, representing a term that dropped out of the model.

We additionally note that we used vague priors for the
attack rate of immune cells b and the median initial num-
ber of immune cells m that describe the dynamics of the
immune system. Our estimates of b and m thus depended
almost entirely on the response-time data. We used iden-
tical priors for the models that include demographic sto-
chasticity and for the model that does not. Our conclusion
that response times are partly determined by demographic

stochasticity and a dynamic immune system is thus not
simply due to our use of informative priors for some
parameters.

Qualitative Model Behavior

To illustrate the key biological differences between our
models, here we focus on the behavior of three particular
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models that highlight the effects of a dynamic host im-
mune response and of demographic stochasticity on re-
sponse times. In figure 2A, we show multiple stochastic
realizations of our most complex model (M1), equations
(1)–(7), which allows for a dynamic immune system and
demographic stochasticity. In B, we show realizations of
the Shortley birth-death model (M3), which does not allow
for a dynamic immune system but does allow for de-
mographic stochasticity. In C, we show realizations of the
no-demographic-stochasticity model (M7), which allows
for a dynamic immune system but does not allow for
demographic stochasticity. Realizations of the former two
models were generated using the Gillespie algorithm
(Doob 1945; Gillespie 1977), while realizations of the latter
model were generated using the Euler method of numer-
ical integration (as we explain in app. A, “Fitting the Mod-
els to Data,” our fitting routine required millions of re-
alizations, and so for the stochastic models in the fitting
routine, we used a hybrid simulation algorithm). When
we fit the models to data, we allowed for variation in doses
and in hosts, but because figure 2 is intended to highlight
the conceptual differences between the models, in these
simulations, dose and susceptibility are identical across
hosts. Parameter values were also chosen to highlight these
conceptual differences (realizations using more realistic
parameter sets are in fig. B1; figs. A1, A2, B1, B2 available
online). In figure 2, the black lines show realizations in
which the virus population grew to high levels and killed
the host, while the gray lines show realizations in which
the virus population was cleared and the host recovered.
Importantly, parameters and initial conditions within each
panel are identical for all realizations, so that differences
in trajectories are only the result of the timing of birth
and death events, and thus demographic stochasticity. As
a result, for this figure, the no-demographic-stochasticity
model is effectively deterministic. Demographic stochas-
ticity is then evident in the jaggedness of the trajectories
for the first two models. As the figure highlights, demo-
graphic stochasticity plays a substantial role when path-
ogen populations are small, and the trajectories become
increasingly smooth as the pathogen population grows.
Demographic stochasticity therefore leads to variability be-
tween trajectories in the time it takes for the pathogen
population to reach a size at which its population growth
is effectively deterministic.

Comparing the most complex model (A) and the Short-
ley birth-death model (B) reveals that the models behave
similarly late in an infection when the pathogen population
is large but that they behave quite differently early in an
infection when the pathogen population is small. For the
most complex model, pathogen populations are main-
tained at low sizes for a relatively long period of time
before the immune system is finally overwhelmed and the

pathogen population begins to grow quickly. The Shortley
birth-death model in contrast predicts that the pathogen
population will usually begin to increase immediately. This
difference occurs because in the Shortley birth-death
model the history and current state of the population have
no effect on whether the next event is a birth or a death,
while in the most complex model, the relative probabilities
of births and deaths change over time, because the host
immune system is dynamic. That is, in the most complex
model, the relative probability of the death of a virus par-
ticle is highest immediately after infection, but it decreases
over time as the immune system becomes exhausted. Be-
cause the effects of demographic stochasticity are strongest
when population sizes are small, and because the immune
system keeps the virus population at low levels for long
periods in the most complex model, the most complex
model predicts that there will be a great deal of variation
among trajectories. Response times in our data are highly
variable, as is the case for many pathogens. Because the
presence of a dynamic host immune system in the most
complex model causes virus populations to be low for long
periods, it allows the most complex model to provide a
much better fit to the data than the Shortley birth-death
model, which has only a static immune system. Because
in figure 2 we temporarily assumed that there are no dif-
ferences between hosts in the threshold virus population
for host response or in immune system strength, the model
without demographic stochasticity (M7) predicts that there
will be no variation in response times (fig. B1 shows re-
alizations of M7 that include those types of stochasticity).
Although this is an extreme case, it usefully emphasizes
the potential importance of demographic stochasticity in
causing variation in response times.

Results

The data from this experiment are deposited in Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.04vh7
(Kennedy et al. 2014a).

As is almost always the case in dose-response studies
using baculoviruses (van Beek et al. 2000; Hodgson et al.
2001; Zwart et al. 2009a), our data show clear relationships
between virus dose and host outcomes (fig. 3; app. A,
“Generalized Linear Model (GLM) Analyses”). Higher vi-
rus doses caused higher mortality and faster deaths. Model
selection using DIC showed that the best model is the
linear virus growth model (M2), which includes demo-
graphic stochasticity, a nonlinear relationship between ap-
plied and effective dose, dynamic effects of the immune
system, and variability between hosts, but not a carrying
capacity for virus growth (table 2). Reassuringly, this
model fits the data quite well (fig. 4A). Relative to this
best model, the Shortley birth-death model (M3), the lin-

This content downloaded from 128.135.12.127 on Wed, 20 Aug 2014 16:06:33 PM
All use subject to JSTOR Terms and Conditions

http://dx.doi.org/10.5061/dryad.04vh7
http://www.jstor.org/page/info/about/policies/terms.jsp


0

1

2

3

4

A
lo

g 1
0(x

t)

0

1

2

3

4

B

lo
g 1

0(x
t)

0 10 20 30 40

0

1

2

3

4

C

Time

lo
g 1

0(x
t)

Figure 2: Realizations of the most complex model (A), the Shortley birth-death model (B), and the no-demographic-stochasticity model
(C). Each trajectory shows the pathogen population size inside a single simulated host. The gray trajectories show realizations in which the
pathogen became extinct, so that the host recovers, while the black trajectories show realizations in which the pathogen overwhelms the
host immune system, killing the host. Death occurs when the virus population reaches the upper threshold (solid horizontal line) at 104

virions, and the times of host deaths are marked on the horizontal axis (dotted vertical lines). Each panel shows 10 realizations of the
respective models. Parameters and initial conditions for A and C: f p 0.3, b p 0.01, 1/K p 0, x0 p 3, y0 p 30. Parameters and initial
conditions for B: f p 0.55, b p 0.01, x0 p 3, y0 p 25.
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Figure 3: The relationship between host outcomes and virus dose, in the data and as predicted by the linear virus growth model (M2).
The solid lines show the predictions of this model, the open circles show the data, and the error bars are �2 SE of the mean. A, Relationship
between host mortality and dose, with mortality increasing with dose. B, Relationship between kill time and dose, with earlier deaths
occurring at higher doses.

ear virus colonization model (M4), and the no-demo-
graphic-stochasticity model (M7) all fit the data much
more poorly (table 2). The best model includes a dynamic
host immune response, nonlinear virus colonization, and
demographic stochasticity, whereas the poorly fitting mod-
els leave out one or more of these mechanisms, and so
we conclude that these mechanisms all have strong effects
on the distribution of host response times. Reasonable
explanations for the data were also provided by the most
complex model (M1), which differs from the best model
in including a virus carrying capacity, as well as the iden-
tical immune system model (M5), and the identical re-
sponse threshold model (M6). The strong showing of the
latter two models suggests that the effects of variability
between hosts in response thresholds and immune re-
sponses are not very strong. To quantify such effects, we
used our parameter estimates (fig. 5) to calculate the co-
efficients of variation (CV) for both the initial number of
immune cells y0 and the threshold pathogen population
size xT for our best model, the linear virus growth model
(M2). The CV of y0 is approximately 0.027, and the CV
of xT is approximately 0.249. The small CV on y0 and the
modest CV on xT lend weight to our assertion that vari-
ability in speed of kill across hosts is not easily explained
by variability among larvae, and we therefore conclude
that demographic stochasticity in pathogen growth is im-
portant in generating variability in speed of kill.

In addition to model selection, we also provide a visual
comparison of the fit of the best model, the linear virus
growth model (M2), as well as the Shortley birth-death
model (M3) and the no-demographic-stochasticity model

(M7). We include only these three models because the
linear virus growth model (M2) represents our basic ar-
gument that the response time of the virus is driven by
demographic stochasticity and a dynamic immune system,
while the other two models represent the most important
alternatives to this argument. Figure 4 shows that the no-
demographic-stochasticity model (M7) does a poor job of
explaining the data because, for this model, variability in
response time can be explained only by differences be-
tween hosts. This model does a spectacularly poor job of
reproducing response times at the lowest virus dose, be-
cause it predicts substantially lower mortality rates than
what we observed. Even at higher doses, however, model
M7 produces an overly flat distribution of response times,
with too little mortality at the peak of each distribution
and too much mortality in the right-hand tail (fig. 4).
Model M7 thus does a poor job of reproducing the sharp
peak of mortality and the extreme right-handed skew that
are apparent at all doses, a failure that is perhaps easier
to see when the fit of model M7 is compared to the fit of
the linear virus growth model (M2), which includes de-
mographic stochasticity.

The Shortley birth-death model (M3), which assumes
a constant virus clearing rate and thus does not include
the effects of a dynamic immune system, fails even more
spectacularly at lower doses, drastically overpredicting
mortality at the peak, and underpredicting mortality in
the tails (fig. 4). The same effects are also present at higher
doses, although they are not as striking. The Shortley birth-
death model has long been criticized on the grounds that
it predicts too little variability in response times relative
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Table 2: Deviance information criterion (DIC) scores

Model name
No. model
parameters pD

Mean
deviance DDIC

M1: most complex model 9 18.97 578.69 3.46
M2: linear virus growth 8 15.33 578.87 0
M3: Shortley birth-death model 5 2.86 786.12 194.79
M4: linear virus colonization 8 15.48 673.33 94.61
M5: identical immune system 8 20.42 584.13 10.35
M6: identical response threshold 8 18.79 579.68 4.27
M7: no demographic stochasticity 9 �2.20 744.25 147.85

Note: The DDIC scores for each of the seven models considered. Following Spiegelhalter et

al. (2002), pD p the mean deviance of the posterior minus the posterior deviance of the mean.

The absolute DIC score is the sum of pD and the mean deviance. The model with the best DIC

is highlighted in bold.

to the variability seen in many data sets (Armitage et al.
1965; Schach and Schach 1970), and the model’s failure
here is due to the same problem. A dynamic immune
system, in contrast, allows the virus population to be main-
tained at low levels for highly variable periods of time (fig.
2). In the models that allow for a dynamic immune re-
sponse and demographic stochasticity, the distribution of
response times shows a sharp peak with an extreme right-
handed skew, which leads to a much better fit to the data.

Insights can also be gained by examining the posterior
estimates of the model parameters (fig. 5). First, the pa-
rameter estimates of the most complex model (M1), the
linear virus growth model (M2), the identical immune
system model (M5), and the identical immune response
threshold model (M6) are all very similar. The relatively
poor fits of models M5 and M6 (table 2) therefore suggest
that small differences in the initial immune cell number
(absent in M5) and in the threshold for host response
(absent in M6) can have important effects on host response
times. Second, our earlier conclusion that a virus carrying
capacity K is unimportant to explaining our response time
data is further strengthened by the observation that the
central credible intervals of the carrying capacity are large
and similar for every model considered.

As Shortley (1965) pointed out, decreasing the net virus
growth rate and the threshold for host response in linear
birth-death models increases the variability in host re-
sponse times. Our estimates of the virus growth rate f

and the median threshold for host response N are quite
a bit smaller for the Shortley birth-death model (M3) than
for the other models (fig. 5). This observation thus
strengthens our previous contention that a dynamic host
immune system, missing from model M3, is important
for generating the high level of variability seen in our
response-time data.

Our best model (M2) and the no-demographic-sto-
chasticity model (M7) provide very different estimates of
the median number of initial immune cells m (on the

order of 100,000 for M2, but only 100–1,000 for model
M7). Given that this latter model provides a much worse
fit to the data, the difference in these estimates suggests
that using model M7 alone would lead to the erroneous
conclusion that gypsy moth larvae have only a small num-
ber of immune cells. Likewise, there is a substantial dif-
ference in the CV of the initial number of immune cells
y0 between these models (0.048 for M7 vs. 0.027 for M2).
This difference in CV likely occurs because the no-
demographic-stochasticity model (M7) relies entirely on
differences between hosts to explain variability in re-
sponse-time data and therefore overestimates the size of
these differences. If demographic stochasticity is important
in other host-pathogen systems, similar biases may exist
in parameter estimates for many within-host models. The
differences in parameter estimates between these two mod-
els thus illustrate that inference based on a badly fitting
model may lead to incorrect conclusions. Additionally, the
relatively high estimate of the CV of the initial number of
immune cells in the no-demographic-stochasticity model
(M7) and the nonzero estimate of this CV in our best
model (M2) emphasize that demographic stochasticity
plays an important role in determining response times, as
does variability among hosts.

Discussion

We found that the model that best fits our data (M2) allows
for demographic stochasticity. This is because virus pop-
ulation sizes early in infections are small, and so chance
events have disproportionately large impacts on whether
and when hosts die and recover. Previous efforts to make
inferences about the processes driving the within-host
growth of baculoviruses used only deterministic models
(van Beek et al. 1988a), and therefore could not have
detected such effects (but see van der Werf et al. 2011 for
a stochastic model of baculovirus colonization). Although
studies in other systems have shown that differences in
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Figure 4: The fit of our models to the data. Each column shows the fit of a different model. A corresponds to the linear virus growth
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comparable to the birth rate f of the other models is the net virus replication rate f � bm, and so that is the value plotted in the panel
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“Virus establishment asymptote (log10c1))” is actually , which is defined in the main text as c1/c2. This difference likely explains why theĉ1

estimate of this parameter is substantially lower than in the other models.

disease dynamics can sometimes be explained by stochastic
processes (Riley et al. 2003; Brown et al. 2006; Grant et
al. 2008; Woo and Reifman 2012), many models assume
that differences in pathogen dynamics between hosts are
due only to differences in host genetics or condition (Antia
et al. 1996; Ganusov et al. 2002; Andre et al. 2003; Mideo
et al. 2008; Pepin et al. 2010). To our knowledge, we are
the first to show that models with demographic stochas-
ticity and differences between hosts provide a better fit to

response-time data than do models lacking either of these
sources of variability. Indeed, the Shortley birth-death
model provides a very poor fit to response-time data in
several host-pathogen systems, especially compared to
models that allow for variability between hosts (Armitage
et al. 1965; Chang 1970; Schach and Schach 1970). We
likewise show that the model that allows for variability
between hosts but not demographic stochasticity (M7) fits
the data better than the Shortley birth-death model. Nev-
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ertheless, models with both variability between hosts and
demographic stochasticity fit our data far better than mod-
els lacking either of these mechanisms, suggesting that
both sources of variation are important. Our results there-
fore provide strong evidence that, for the gypsy moth virus,
demographic stochasticity has an important effect on the
response time of infected hosts. Additionally, differences
between hosts affect response times, even though the mag-
nitudes of these host differences are quite modest. Small
differences between hosts can thus have detectable effects
on host outcomes. Our results thus suggest that the out-
come of infection might be difficult to predict both because
of demographic stochasticity within hosts and because of
small differences between hosts that cannot be measured
precisely.

A stochastic model will almost inevitably provide a bet-
ter fit to data than a deterministic model given the im-
portance of stochasticity in population biology, but all of
our models include some form of stochasticity. Compar-
isons of the best model to the identical response threshold
model (M5), the identical immune system model (M6),
and the no-demographic-stochasticity model (M7) show
that both stochastic differences between hosts and sto-
chastic variation in virus growth play roles in generating
response times. Because M7 includes only stochastic dif-
ferences between hosts, it cannot fully explain how the
distribution of response times changes across virus doses,
whereas the models that include demographic stochasticity
can explain this aspect of the data. On the other hand,
the models that neglect stochastic differences between
hosts (M5 and M7) provide a substantially poorer fit than
our best model (M2), which means that stochastic vari-
ation between hosts also plays a role in generating response
times. Our general conclusion is thus that demographic
stochasticity in within-host population growth is a ne-
glected mechanism in studies of infectious diseases.

The crucial difference between our best model (M2)
and the Shortley birth-death model (M3) is that our best
model allows for dynamic effects of the immune system,
demonstrating that changes in the immune system over
time are important to understanding response-time data.
Insect immune responses against viruses have long been
presumed to be quite limited (Washburn et al. 1996; Strand
2008), and we therefore hope that our work will stimulate
further research in insect immunology. More broadly, the-
ory has strongly emphasized the role of dynamic immune
responses on host-pathogen evolution (Antia et al. 1994;
Hamilton et al. 2008; King et al. 2009), and models have
shown that stochasticity may play an important role in
pathogen dynamics within hosts (Grant et al. 2008;
Vaughan et al. 2012; Woo and Reifman 2012). To our
knowledge, however, we are the first to show that dynamic

changes in an immune system can have a detectable effect
on variation in host response times.

For nucleopolyhedroviruses like the gypsy moth path-
ogen, host death is required for transmission, and so var-
iability in response time leads to variability in time to
transmission. Variability in time to transmission can in
turn have dramatic consequences for longer-term disease
dynamics (Wearing et al. 2005). Because we have shown
that dynamic host immune responses affect response
times, it follows that immune responses can affect disease
dynamics.

We found that the most complex model (M1) provided
a poorer fit to the data than the linear virus growth model
(M2), even though model M2 lacks resource limitation
during virus growth. Given that the difference in DIC
scores between these models is small, this conclusion might
change if we had more data or different data, but it is
nevertheless worth considering why there may be no re-
source limitation. For baculoviruses and other obligately
lethal pathogens, there are likely trade-offs between the
benefits that arise from keeping a host alive so that the
pathogen can replicate and the benefits that arise from
killing a host quickly so that the pathogen can spread.
Indeed, there is empirical evidence that such trade-offs
exist in baculoviruses (O’Reilly and Miller 1991; Hodgson
et al. 2001; Cooper et al. 2002). Given this trade-off be-
tween pathogen production and transmission, it follows
that there must be an optimal killing time (Ebert and
Weisser 1997) that maximizes pathogen fitness. The lack
of importance of resource limitation in our models thus
suggests that the gypsy moth virus usually kills before host
resources are completely exhausted. A rapid speed of kill
may be beneficial because doses in the field are very high
(D’Amico et al. 2005), which in combination with our
finding that dose effects are nonlinear, implies that there
is little benefit to producing additional virus particles. The
optimal killing time may therefore occur well before host
resources become limiting.

Although our data were collected for only a single host-
pathogen system, our models are general. It is therefore
at least possible that our results can be generalized to other
host-pathogen systems. In particular, the greater com-
plexity of the vertebrate immune system suggests that the
immune-system effects that we see in the gypsy moth may
be even stronger in vertebrates. Likewise, population bot-
tlenecks are associated with transmission events in many
host-pathogen systems (McGrath et al. 2001; Moury et al.
2007), suggesting that initial pathogen populations within
hosts are small for many pathogens. Demographic sto-
chasticity may thus be important in many infectious
diseases.

The importance of demographic stochasticity means
that individual responses to pathogens may be unpre-
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dictable even given extensive knowledge of host and path-
ogen genetics. Furthermore, selection is often assumed to
be extremely efficient in pathogen populations, because
population sizes are large and generation times are short
relative to host generation times (Tooby 1982; Altizer et
al. 2003; Ebert and Bull 2008). In the case of within-host
growth, however, demographic stochasticity is effectively
equivalent to genetic drift (Turner and Duffy 2008). The
importance of demographic stochasticity in explaining our
data thus suggests that drift may often overwhelm selection
inside hosts, in turn implying that selection may be less
effective than previously believed. One consequence of this
effect is that deleterious alleles may be quite common in
pathogen populations, despite the common assumption
that pathogens have optimal phenotypes (Ewald 1994;
Ebert 1998). An interesting question for further research
is thus, how strong a selective force is needed to overwhelm
drift in insect-baculovirus systems?

The small magnitude of host differences in our best-
fitting model is surprising given that previous research has
shown that differences between hosts play a strong role in
virus transmission in gypsy moth populations in the field
(Dwyer et al. 1997, 2000; Elderd et al. 2008). We emphasize
again, however, that our host insects were derived from a
lab colony of low variability (Dwyer et al. 1997), and we
followed standard protocols by discarding larvae that did
not consume the entire dose (Li and Bonning 2007). In
nature, in contrast, larvae can sometimes detect and avoid
infectious cadavers (Capinera et al. 1976), and variability
in this trait appears to be heritable (Parker et al. 2010).
The exclusion of such behaviors in our experiments may
therefore explain why differences between hosts had only
weak effects in our data.

We used response time data because response time is
important for insect biocontrol and because such data are
cheap, can be collected more easily, and can be measured
more accurately than pathogen population sizes. The suc-
cess with which these data allowed us to detect effects of
demographic stochasticity and a dynamic immune system
suggests that response times do indeed provide substantial
information about within-host pathogen growth, despite
the Morgan and Watts (1980) argument that response-
time data are insufficient for model comparison. A key
difference between their work and ours, however, is that
we took a Bayesian approach to estimate our model pa-
rameters. This allowed us to use literature data to construct
prior distributions, ensuring that our parameter estimates
would be biologically reasonable. We emphasize, however,
that our main conclusions come from the relative abilities
of the models to explain our data rather than from our
parameter estimates. Our main conclusions are thus not
based solely on parameter estimates that reflect our choices
of priors.

More direct measurements of within-host population
sizes may allow powerful inferences about within-host
population growth. Nevertheless, in gypsy moths and other
small insects, a quantitative polymerase chain reaction re-
quires destructive sampling (Mukawa and Goto 2008), and
so time series of virus population sizes would still be un-
available. As a result, it may be difficult to distinguish
demographic stochasticity from stochastic differences be-
tween hosts.

For baculoviruses in particular, response time data are
very common. Most studies, however, report only median
or mean survival times (Farrar and Ridgway 1998), making
it difficult to use the data to choose between models. Nev-
ertheless, we note that van Beek and colleagues (van Beek
et al. 1988a, 1988b) have shown that within-host models
can usefully describe variability in median survival time
across treatments. By going beyond their approach to test
our models with the entire distribution of survival times,
we hope to have shown that more powerful conclusions
can be drawn about the mechanisms driving within-host
pathogen growth.
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“Such degraded forms of Diptera are the connecting links between the true six-footed insects and the order of Arachnids (spiders, mites,
ticks, etc.). The reader should compare the Nycteribia with the young six-footed moose-tick figured on page 559 of the Naturalist. Another
spider-like fly is the Chionea valga [...], which is a degraded Tipula, the latter genus standing near the head of the suborder Diptera. The
Chionea, according to Harris, lives in its early stages in the ground like many other gnats, and is found early in the spring, sometimes
crawling over the snow.” From “A Chapter on Flies (Concluded)” by A. S. Packard Jr. (The American Naturalist, 1869, 2:638–644).
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