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Summary

1.

 

The population dynamics of many herbivorous insects are characterized by rapid
outbreaks, during which the insects severely defoliate their host plants. These outbreaks
are separated by periods of low insect density and little defoliation. In many cases, the
underlying cause of these outbreaks is unknown.

 

2.

 

Mechanistic models are an important tool for understanding population outbreaks,
but existing consumer–resource models predict that severe defoliation should happen
much more often than is seen in nature.

 

3.

 

We develop new models to describe the population dynamics of plants and insect
herbivores. Our models show that outbreaking insects may be resource-limited without
inflicting unrealistic levels of defoliation.

 

4.

 

We tested our models against two different types of field data. The models success-
fully predict many major features of natural outbreaks. Our results demonstrate that
insect outbreaks can be explained by a combination of food limitation in the herbivore
and defoliation and intraspecific competition in the host plant.
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Introduction

 

Populations of many herbivorous insects undergo out-
breaks, in which short-lived peaks of high density and
massive defoliation alternate with long periods of low
density (Varley, Gradwell & Hassell 1973; Crawley 1983;
Berryman 1987; Myers 1988; Logan & Allen 1992).
Because of the long time scales involved, identifying
the causes of these fluctuations empirically is difficult
(Liebhold & Kamata 2000), so mathematical models
provide key tools for understanding insect outbreaks.
Most models assume that outbreaks are driven by
parasitoids and pathogens (e.g. Hairston, Smith &
Slobodkin 1960; Hassell 1978; Anderson & May 1980;
Murdoch, Briggs & Nisbet 2003; Turchin 

 

et al

 

. 2003),
on the grounds that parasitoid and pathogen attack
rates are often high during outbreaks (Hassell 1978;
Anderson & May 1980). Host–pathogen and host–
parasitoid models can indeed produce long-period,
large-amplitude cycles that resemble time series of insect
outbreaks (Kendall 

 

et al

 

. 1999; Turchin 

 

et al

 

. 2003);

nevertheless, for some insect herbivores, intraspecific
competition is clearly more important than natural
enemies for population regulation (Carson & Root
1999, 2000; McEvoy 2002; Bonsall, van der Meijden &
Crawley 2003; Long, Mohler & Carson 2003). In an
effort to understand outbreaks in such species, here we
construct and analyse plant–herbivore models in which
food limitation drives insect population dynamics.

Models applied to plant–herbivore interactions are
usually modified versions of Lotka–Volterra predator–
prey models (Caughley & Lawton 1981; Crawley 1983;
Grover & Holt 1998; Das & Sarkar 2001, but cf. Buck-
ley 

 

et al

 

. 2005). Like most consumer–resource models,
these models show ‘prey–escape’ cycles in which the
plant acts as prey, rising briefly to high densities before
being decimated by rising herbivore densities. In nature,
by contrast, the densities of plants that are attacked by
outbreaking herbivores are usually high for long
periods, with only brief  periods of high defoliation
(McNamee, McLeod & Holling 1981; Crawley 1983;
Berryman 1987). Indeed, the observation that defoliation
is low much of the time inspired the general argument
that plants and their herbivores do not regulate each
other (Hairston 

 

et al

 

. 1960; Lawton & McNeill 1979;
Price 

 

et al

 

. 1980). Nevertheless, others have argued that
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herbivores may be food-limited, and plant densities may
be affected by herbivores, even if  obvious defoliation is
infrequent (Murdoch 1966; Ehrlich & Birch 1967).
Here we attempt to provide a quantitative framework
for the latter argument.

By constructing models that realistically describe the
biology of  herbivorous insects and their host plants,
we show that it is possible to explain insect outbreaks
through a combination of food limitation in the her-
bivore and defoliation and intraspecific competition in
the host plant. Unlike the prey-escape cycles predicted
by classical models, outbreaks in our models are
characterized by high plant abundance during the
inter-outbreak period, more closely matching patterns
of defoliation observed in natural systems. Our results
show that herbivore food limitation does not necessarily
suggest prolonged periods of severe defoliation, and that
realistic insect outbreaks can result from plant–herbivore
interactions alone.

 

Methods

 

As we have described, models that are applied to plant–
herbivore interactions are often consumer–resource
models that show prey-escape cycles (Pacala & Crawley
1992; Nisbet 

 

et al

 

. 1997; Huisman & Olff 1998; Trumper
& Holt 1998). Figure 1(a) shows that, for the well known
Rosenzweig–MacArthur model, low consumer densities
allow the resource to escape strong consumption tem-
porarily and increase quickly, but over-exploitation
eventually causes both populations to crash. Although
the prey may approach its peak density more gradually
than the consumer (Turchin 2003), prey-escape cycles
ultimately predict that insect outbreaks should be
preceded directly by relatively rapid and short-lived out-
breaks in plant abundance. In nature, however, densities
of the host plants of outbreaking insects are usually
high for long periods, during which insect densities are
correspondingly low. Periods of high plant abundance
in such systems are punctuated by sudden insect out-
breaks, followed by a rapid crash and rapid recovery
of the host plant (McNamee 

 

et al

 

. 1981; Crawley 1983;
Berryman 1987). Prey-escape cycles thus do not capture
a basic feature in outbreaking insect–plant systems. To
document this lack of  fit to data, we quantified the
percentage of time that host plants are defoliated in
several natural systems. To make comparisons between
models and data, and between data sets that report
different measures of defoliation, we defined periods of
defoliation to be times during which plant abundance
was 

 

<

 

75% of the maximum abundance ever observed,
although changing this cutoff  somewhat did not alter
our conclusions. The data in Table 1 show that defoli-
ation by several outbreaking insects does indeed con-
tradict the predictions of prey-escape cycles. We
therefore set out to construct more realistic models of
insect–plant interactions.

It is perhaps not surprising that consumer–resource
models such as the Rosenzweig–MacArthur model do

not match the population dynamics of outbreaking
insects because such models are formulated in continuous
time, whereas most outbreaking insects have discrete
generations (Hunter 1991). However, well known dis-
crete time consumer–resource models (after Nicholson

Fig. 1. Time series predicted by the Rosenzweig–MacArthur
model and by density-dependent Nicholson–Bailey models.
Thin lines correspond to the left-hand y-axes and represent
resource abundances; thick lines on the right-hand axes
are consumer abundances. Simulations were run for 10 000
generations with the last 20–100 generations shown. The
models, in which N represents host density and P repres-
ents consumer density, are: (a) Rosenzweig–MacArthur
model: dN/dt = rN[1 – (N/K)] – aNP/(1 + aThN), dP/dt = eaNP/
(1 + aThN)  – dP with r = 0.2, K = 150, a = 0.02, Th = 1, e = 1,
d = 0.4; (b) Nicholson–Bailey/type II model: Nt+1 = Ntexp{ρ(1 –
 Nt) – [Pt/(1 + αNt)]}, Pt+1 = ϕNt{1 – exp[–Pt/(1 + αNt)]} with
ρ = 2·2, α = 0·04, ϕ = 4; (c) Nicholson–Bailey/type III model:

, Pt+1 =
 with ρ = 2·9, α = 0·25,

γ = 0·125, ϕ = 12·5.

N N N N P N Nt t t t t t t+ = − − + +1
21 1  exp{ (   )  [ /(     )]}ρ α γ

ϕ α γN N P N Nt t t t t{   exp[ /(     )]}1 1 2− − + +
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1933; Nicholson & Bailey 1935) also show prey-escape
cycles (Fig. 1b,c), so this disparity is not limited to
continuous-time models. In contrast to the assumptions
of the Nicholson–Bailey model, insect and plant sur-
vival rates often appear to be non-linear functions of
plant and insect density, respectively (Harper 1977;
Crawley 1983). In our discrete-time models, we therefore
assume that herbivore population growth is a non-linear
function of herbivore feeding rate, and that plant pop-
ulation growth decreases gradually with increasing
herbivory. Also, and again unlike the Nicholson–Bailey
models, we assume that the herbivore feeding rate
depends on plant density, rather than on herbivore
density (Crawley 1983). A final key feature of  many
plant–herbivore interactions is that, in the absence of
the herbivore, plant population density is regulated by
intraspecific competition (Harper 1977; Antonovics &
Levin 1980; Watkinson 1980), so we allow for density
dependence in the plant.

Given these general considerations, we constructed
our models as follows. 

 

X

 

t

 

 represents the density of edible
plant biomass in generation 

 

t

 

 and 

 

Y

 

t

 

 represents the
population density of the herbivore. Plant population
growth is described by the function 

 

f

 

(

 

X

 

t

 

), while the
effect of the herbivore on the plant’s population growth
rate is described by the function 

 

g

 

(

 

Y

 

t

 

). We assume that
herbivore population growth is proportional to a non-
linear, saturating function of plant density, 

 

h

 

(

 

X

 

t

 

). The
structure of our models is:
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+

 

1
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) 

 

g

 

(

 

Y

 

t

 

), (eqn 1a)
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+

 

1

 

 

 

=

 

 

 

sY

 

t

 

 h

 

(

 

X

 

t

 

), (eqn 1b)

where 

 

r

 

 and 

 

s

 

 are the maximum population growth
rates for plant and herbivore.

To ensure our results are robust to changes in model
structure, we consider two different functions for plant
self-limitation. The first is the Ricker model:

 

f

 

(

 

X

 

t

 

) 

 

=

 

 exp(

 

–mX

 

t

 

), (eqn 2)

where larger values of 

 

m

 

 represent stronger density
dependence in the plant’s growth rate. The second form
of plant self-limitation is the Beverton–Holt model:

 

f

 

(

 

X

 

t

 

) 

 

= 1/(1 + nXt), (eqn 3)

in which larger n represents stronger plant self-limitation.
Many consumer–resource models assume a non-linear

relationship between resource population size and
attack rate (Beddington 1975; Tang & Chen 2002). For
plants and insect herbivores, we similarly expect a
non-linear functional relationship, due to herbivore
foraging time and satiation, but the relationship is
expressed in terms of plant biomass units rather than
population size, because herbivory is unlikely to kill
entire plants (Harper 1977; Crawley 1983). Although

Table 1. Comparison of the percentage of time plants are defoliated in the model predictions and data

Insect species/
model name

Percentage of time 
plant experiences 
defoliation

Reference/equationMean Range

Insect data
Herbivores of Solidago altissima† 20·8 16·7–50·0 Root & Cappuccino (1992)

Orgyia pseudotsugata (Douglas fir tussock moth) 13·4 1·8–51·4 Shepherd et al. (1988)
Lymantria dispar (gypsy moth) 44·2 18·1–69·4 Leibhold, Elkinton & Muzika (2000)
Quadricalcarifera punctatella (beech caterpillar) 10·7 7·1–21·4 Leibhold, Kamata & Jacobs (1996)

Classical models
Rosenzweig–MacArthur‡ 69·1–92·1 Fig. 1a legend
Nicholson–Bailey/type II 48·5–96·0 Fig. 1b legend
Nicholson–Bailey/type III 45·1–98·0 Fig. 1c legend

Our models
Ricker/type II 15·8–96·0 Equation 7
Ricker/type III 9·9–94·1 Equation 8
Beverton–Holt/type II 24·8–84·2 Equation 9
Beverton–Holt/type III 21·8–63·4 Equation 10

Minimum and maximum over a wide range of parameter values (see Appendix S1) are shown for the models. The average and 
range of reported time series are listed for data. We say a plant population is ‘defoliated’ if  its abundance is <75% of the maximum 
observed abundance.
†Based on a total of five leaf-chewing insect species, including Trirhabda virgata, that consume S. altissima.
‡It is interesting to note that for parameter combinations that result in extremely infrequent outbreaks (e.g. 200 years between 
successive outbreaks), the Rosenzweig–MacArthur model can actually show defoliation as little as ≈25% of the time. However, 
when we exclude parameter combinations that result in fewer than one outbreak every 50 years (a very loose constraint, given that 
outbreaking insects typically peak every 8–12 years; Liebhold & Kamata 2000), we find the range of defoliation times reported 
here.
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little is known about consumption rates at low plant
density, there is abundant evidence that herbivory pla-
teaus when food is at high density (Solomon 1981;
Crawley 1983; Morris 1997; Rhainds & English-Loeb
2003). Two useful ways to represent such consumption
rates are type II and type III functional responses. To
ensure our results are robust to changes in functional
form, we consider both. For type II, we have:

g(Yt) = a/(b + Yt), (eqn 4a)

h(Xt) = pXt/(q + Xt), (eqn 4b)

For type III we have:

(eqn 5a)

(eqn 5b)

In the absence of herbivores, the plant attains a fraction
a/b (type II) or c/d 2 (type III) of the population growth
rate given by f(Xt). b and d are the densities of herbiv-
ores required to reduce these fractions to half  their
maxima. With abundant food, herbivore survivorship
will equal p (type II) or u (type III). q and v give the density
of edible plant biomass that causes a 50% reduction in
herbivore survival.

We begin our analyses by non-dimensionalizing the
four resulting models (each form of plant density
dependence with each set of interaction terms). Non-
dimensionalization is an algebraic manipulation
that allows state variables to be measured in scale-
independent units, reducing the number of parameters
and simplifying the analysis of  the models. When
non-dimensionalized, each model has only three
parameters. For instance, the discrete-time analogue of
the Rosenzweig–MacArthur model has Ricker density
dependence in the plant (equation 2) and type II
interaction terms (equation 4):

Xt+1 = rXt exp(–mXt)a /(b + Yt), (eqn 6a)

Yt+1 = sYt pXt/(q + Xt). (eqn 6b)

Substituting Rt ≡ mXt, Nt ≡ Yt/b, λ ≡ ar/b, ω ≡ sp and
β ≡ qm into equation 6 gives:

Rt+1 = λRt exp(–Rt)/(1 + Nt), (eqn 7a)

Nt+1 = ωNt Rt/(β  + Rt), (eqn 7b)

where Rt represents the density of edible plant biomass
and Nt represents herbivore density, with each in dimen-
sionless units. Similarly, the Ricker/type III model
becomes:

(eqn 8a)

(eqn 8b)

when non-dimensionalized. The Beverton–Holt/type
II model becomes:

Rt+1 = λRt/[(1 + Rt) (1 + Nt)], (eqn 9a)

Nt+1 = ωNt Rt/(β + Rt), (eqn 9b)

and the non-dimensionalized Beverton–Holt/type III
model is:

(eqn 10a)

(eqn 10b)

In all four models, ω, λ and β describe the maximum
insect and plant population growth rates and the
strength of food limitation, respectively. Larger values of
β mean that the herbivore is more severely food-limited.

Natural populations experience fluctuations in environ-
mental conditions from year to year, and insects are
known to be particularly susceptible to the density-
independent effects of weather (Williams & Liebhold
1995; Andresen et al. 2001; Redfern & Hunter 2005),
so it is important to consider stochasticity in insect
dynamics. We achieved this by replacing ω in equations
7–10 with exp(εt)ω. Values of εt were normally distri-
buted with mean zero and variance σ 2 and were inde-
pendently drawn in each time step.

For cases in which the models exhibited chaos, we cal-
culated Lyapunov exponents, using the methods described
by Dennis et al. (2001). Chaos is indicated by positive
global Lyapunov exponents (GLEs) and is characterized
by an erratic predicted time series. Local Lyapunov
exponents (LLEs) give the rate of trajectory divergence
from a particular set of initial conditions over a short time
interval. For a chaotic cyclic attractor, the magnitudes
of LLEs calculated at points around the cycle identify the
points that contribute most to the chaotic GLE. Positive
(chaotic) LLEs also tell us where in phase space stochas-
ticity will most strongly amplify deterministic chaos.

We tested our models in several ways. First, both for
our models and for some common consumer–resource
models, we ran simulations to examine whether the
models can produce dynamics that qualitatively resemble
the pattern of short periods of defoliation followed by
long periods of high plant biomass. We compared the
minimum and maximum defoliation levels predicted by
each model against defoliation data for several species
(Table 1). We constructed Table 1 by simulating each
model over a very broad range of parameter values
(Appendix S1 in Supplementary material) and calcu-
lating the proportion of the time the plant was below
75% of its maximum abundance for each parameter
combination. We excluded simulations that did not
exhibit reasonable outbreak behaviour (those that
were not outbreaking at all and those outbreaking less
frequently than once every 50 years), then reported
the range of defoliation intensities displayed by the
remaining simulations in the table.

g Y c d Yt t( )  /(   ),= +2 2

h X uX v Xt t t( )  /(   ).= +2 2 2

R R R Nt t t t+ = − +1
21  exp ( )/(   ),λ

N N R Rt t t t+ = +1
2 2  /(   ),ω β

R R R Nt t t t+ = − +1
21 1  /[(   )(   )],λ

N N R Rt t t t+ = +1
2 2  /(   ).ω β
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Second, we used experimental and observational data
on Solidago altissima L. and its outbreaking specialist
herbivores, Trirhabda virgata LeConte, Trirhabda bore-
alis Blake and Trirhabda canadensis Kirby, to estimate
parameter values for our models. We used Akaike’s
information criterion (AIC) to gauge the support the
data provide for the functions we used in constructing
our models relative to linear alternatives. AIC takes
into account both the better fit and the reduced parsi-
mony provided by models with more parameters, such
that the model with the smallest AIC value provides the
best explanation for the data. Models with AIC differ-
ences (AIC values minus the smallest observed AIC value)
smaller than ≈2 are supported by the data almost as
well as the best model, whereas models with AIC dif-
ferences of ≈4 or greater have much weaker empirical
support than the best model (Burnham & Anderson
2002). Using the fitted parameter estimates, we com-
pared the models’ predictions to observational data on
this system. We chose Solidago and Trirhabda for this
example because there are abundant data on the details
of their interaction, and because they fit the major
assumptions of  our models. In particular, there is
evidence that Solidago is self-limited (Hartnett &
Bazzaz 1985), that leaf-chewing by Trirhabda can reduce
Solidago population growth (Sholes 1981; McBrien,
Harmsen & Crowder 1983; Cain, Carson & Root 1991;

Meyer & Root 1993; Long et al. 2003), and that Trirhabda
are food-limited (Brown & Weis 1995; Blatt, Schindel &
Harmsen 1999; Appendix S2). Trirhabda are univoltine
and the perennial Solidago grows new above-ground
shoots each year, so both the edible plant biomass and
the insect population are well described by discrete-time
models. Above all, empirical data suggest that inter-
actions with the host plant are important for driving
Trirhabda population dynamics (Brown & Weis 1995;
Herzig 1995), and that positive density dependence
in parasitism rates, which is believed to drive the out-
breaks of many insects (Hassell 1978; Anderson & May
1980), does not occur in this system (Messina 1983).
The three common Trirhabda species are ecologically
very similar (Messina & Root 1980; Messina 1982;
Meyer & Whitlow 1992; Hufbauer & Root 2002), so in
estimating parameters we assumed that the differences
among them occur at a level of  detail not considered
by our models. Parameter estimates were obtained by
maximum likelihood, with bootstrapped 95% confi-
dence intervals, assuming normally distributed error.

Results

Each of the models (equations 7–10) shows realistic out-
breaks with high plant biomass in the inter-outbreak
period (Fig. 2). In general, the proportion of the time

Fig. 2. Time series predicted by our models (equations 7–10). Thin lines correspond to left-hand y-axes and represent plant
densities; thick lines on the right-hand axes are herbivore densities. Simulations were run for 10 000 generations with the last 100
generations shown. Models shown are: (a) Ricker/type II with σ = 0, λ = 5, ω = 4, β = 0·2; (b) Ricker/type III with σ = 0, λ = 6,
ω = 4, β = 0·8; (c) Beverton–Holt/type II with σ = 0, λ = 4, ω = 3, β = 0·07; (d) Beverton–Holt/type III with σ = 0, λ = 6, ω = 4,
β = 7.



1009
Outbreaks in plant–
herbivore models

© 2007 The Authors.
Journal compilation
© 2007 British 
Ecological Society, 
Journal of Animal 
Ecology, 76, 
1004–1014

the plant experiences defoliation decreases as ω increases
and as λ and β decrease. These cycles are qualitatively
different from the prey-escape cycles predicted by other
consumer–resource models (Fig. 1) in that the plant
population spends a significant amount of time near its
carrying capacity, matching field observations showing
that defoliation occurs only rarely (Table 1). Table 1
shows that traditional consumer–resource models are
unable to reproduce this pattern. Specifically, traditional
models predict that defoliation should occur about half
of the time or more, whereas natural defoliation rarely
occurs more than 50% of the time. Our plant–herbivore
models, in contrast, can reproduce most of  the range
of observed defoliation frequencies and always have
minima less than 25%. Our models can thus explain
data on several different taxa, whereas traditional
consumer–resource models cannot. For species such as
Orgyia pseudotsugata and Lymantria dispar, there is over-
whelming evidence for an important role of natural
enemies (Dwyer, Dushoff & Yee 2004), and for such
species our models thus serve as a useful starting point
for more realistic models that incorporate both food
limitation and natural enemy attacks. For Trirhabda
and perhaps other old-field insects, however, we suspect
that our models are realistic enough to be directly useful
in their current formulation.

To understand what makes the outbreaks in our
models so different from the outbreaks in classical
consumer–resource models, we analysed our models
by calculating their equilibria, and by carrying out
linear stability analyses. Like many classical consumer–
resource models, our models have two non-trivial equili-
bria. At one equilibrium, the plant and the herbivore
coexist at a stable fixed point. At the other equilibrium,

the herbivore is extinct and the plant grows to its car-
rying capacity. In Fig. 3, we show how the qualitative
behaviour of the models changes as plant population
growth rate, λ, and the strength of  food limitation,
β, vary. Each equilibrium is stable in a distinct region
of parameter space. Changing herbivore population
growth, ω, changes the exact placement of the stability
boundaries in β–λ space, but does not change the ori-
entation of these boundaries relative to one another.
For parameter combinations for which none of the
equilibria are stable (regions labelled ‘both species
unstable’ in Fig. 3), several different dynamic behavi-
ours may occur. Just outside the region of stability,
limit cycles arise. Further from the stability boundary,
the limit cycle widens and the trajectory approaches the
other two unstable equilibria, first the one at which
both species are extinct, and second the one at which
the insect is extinct but the plant is near its carrying
capacity. This cycle yields the realistic outbreak behavi-
our shown in Fig. 2, in which the system remains near
the boundary equilibrium during the inter-outbreak
period. Near this equilibrium, food is abundant, so the
small herbivore population temporarily escapes food
limitation while again increasing to outbreak densities.
Because classical discrete-time consumer–resource
models assume a linear relationship between resources
consumed and new consumers produced, cycles in such
models never take trajectories that allow one species to
remain at very high densities while the other is at very
low densities. Constructing our models to describe
insect–plant interactions accurately thus allows the
unstable boundary equilibria to drive realistic out-
break behaviour.

Our analyses show that all four models exhibit the
same range of dynamics. The only notable difference
among the models is that Beverton–Holt density
dependence causes the plant population to remain
constant during the inter-outbreak period, whereas
Ricker density dependence causes damped 2n-point cycles
(Fig. 2a,b). This is because when the insect population
is at low density, the plant population behaves almost
as it would in a single species model. Unlike the equili-
brium of the single species Ricker model, the equilibrium
of the single-species Beverton–Holt model is always
stable. The same suite of  dynamics is also produced
by models with mixed interaction terms (based on a full
analysis of  the model using equations 2, 4a, 5b and
simulations of the remaining three combinations of
functional forms). It thus appears that the model in
equation 1 is structurally stable, meaning that our
results are robust to changes in the functional forms
that we use.

For most species, the exact timing and size of outbreaks
is unpredictable, even when the long-term tendency is
for outbreaks to occur at fairly regular intervals. Reas-
suringly, all four models can show weak deterministic
chaos that allows for this behaviour, by making outbreaks
more variable without changing the long-term tendency
toward cycles. Adding log-normally distributed noise

Fig. 3. Behaviour of our models (equations 7–10) with σ = 0 and ω = 4: (a) Ricker/type
II; (b) Ricker/type III; (c) Beverton–Holt/type II; (d) Beverton–Holt/type III. Larger
values of λ represent higher plant population growth rates; larger values of β represent
stronger food limitation in the herbivore. Cycles, outbreaks and deterministic chaos
occur within the region labelled ‘both species unstable’.
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about the insect growth-rate term, ω, increases the
strength of chaos in this range for three of the four
models (Fig. 4a,c,e). Ordinary limit cycles do not
exhibit chaos (Rand & Wilson 1991), so the determin-
istic chaos in these models is probably caused by the
simultaneous influence of multiple unstable equilibria
on the populations’ trajectories. Similar results were
found in the host–enemy models of Umbanhowar &
Hastings (2002); Dwyer et al. (2004); Hall, Duffy &
Cáceres (2005). The local Lyapunov exponents in our
models tend to be highest when the insect population is
building up (Fig. 4d,f,h) or crashing down (Fig. 4b,f),
demonstrating that these transitions at the beginning
and end of  outbreaks are most responsible for the
chaotic dynamics. Previous work has shown that periodic
forcing can cause a system to switch chaotically between
attractors (Henson et al. 1999; Dennis et al. 2001;
Keeling, Rohani & Grenfell 2001), but further research
is needed to understand how multiple unstable equilibria
may interact to cause chaos.

Appendix S3 shows our parameter estimates for the
Solidago–Trirhabda system and the type of data used
for each estimate. In estimating model parameters, our
intent was not to test the models’ assumptions per se,
but rather to demonstrate that the parameter estimates
can be easily obtained from existing data. Nonetheless,
we used AIC differences to gauge the support that the
data provide for the functions in our models relative to
simpler, linear alternatives. The linear models never
provide the best fit to the data, and for plant density
dependence and insect food limitation, our non-linear
functions provide a substantially better explanation for
the data than do the linear models (Table 2). The non-
linear functions are shown with the data to which they
were fitted in Appendix S3 (Figs S3.1–S3.3). For each
of our non-linear models, we randomly drew 500 para-
meter combinations from the bootstrapped distributions
for the Solidago–Trirhabda system. We then used these
to calculate the non-dimensional parameters λ, ω and
β for each of the random combinations. The resulting
values of λ, ω and β lay within the outbreak region of
parameter space in all 500 cases (Appendix S3, Figs S3.4,
S3.5). As Trirhabda spp. do indeed outbreak (Messina
& Root 1980; McBrien et al. 1983; Root & Cappuccino
1992; Brown & Weis 1995), our models accurately pre-
dict the qualitative dynamics of this system.

In carrying out a more quantitative comparison of
models to data, we were limited by the lack of long-
term time series of Trirhabda densities against which to
compare the models’ predicted time series. Further-
more, like any models with complex dynamics, our
models are at least moderately dependent on initial
population densities, and these are of course unknown.
We therefore follow Kendall et al. (1999) in comparing
summary statistics describing our model predictions
with statistics reported for the Solidago–Trirhabda sys-
tem. To avoid circularity, we used summary statistics
from studies other than those from which we estimated
parameter values. First, high Trirhabda densities last
only a growing season or two (McBrien et al. 1983),
which compares well with our model prediction that
outbreaks should last an average of  1·9–2·3 years.
Second, the maximum observed T. virgata densities over
a 6-year period were approximately five times greater
than the mean density (Root & Cappuccino 1992), which
similarly compares well with our model predictions
that the maximum density in six generations should be,
on average, 5·7 (Ricker/type II), 5·8 (Ricker/type III
and Beverton–Holt/type III) or 5·9 (Ricker/type III)
times the mean. Finally, the standard deviation of log
T. virgata abundances ranged from very small values to
≈1, with a median near 0·5 (Root & Cappuccino 1992),
which is included in the range of our model predictions
for standard deviations (1·2 for Ricker/type II, 0·5 for
Ricker/type III, 1·4 for Beverton–Holt/type II and 0·4
for Beverton–Holt/type III). Our models thus successfully
reproduce quantitative features of Trirhabda outbreaks
in nature. Moreover, the data used to parameterize the
models were collected over short spatial and/or temporal

Fig. 4. Lyapunov exponents for: (a,b) Ricker/type II model
with ω = 4, λ = 6, β = 1; (c,d) Ricker/type III model with ω =
4, λ = 6, β = 3·6; (e,f) Beverton–Holt/type II model with ω = 4,
λ = 7, β = 2; (g,h) Beverton–Holt/type III model with ω = 2,
λ = 9, β = 2·5. (a,c,e,g) Global Lyapunov exponents (GLEs)
with varying degrees of  stochasticity. Values above dashed
line (positive GLEs) are chaotic. (b,d,f,h) Local Lyapunov
exponents (LLEs) (σ = 0). The x–y plane represents phase
space, with the two + signs showing population densities at the
unstable coexistence and boundary equilibria. Black dots in
this z = 0 plane show the limit cycle; vertical lines show the
magnitudes of the LLE calculated at each point around the
cycle for 10 time steps. Black lines indicate positive (chaotic)
LLEs; grey lines indicate negative LLEs.
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scales (Appendix S3), whereas the summary statistics
used to test the models came from larger-scale studies:
data in McBrien et al. (1983) were collected in six 100·5-
m2 plots over 5 years; data in Root & Cappuccino
(1992) were collected in 22 fields exceeding 7 km2 over
6 years. The tests of our models thus involved both
independent parameter estimates and extrapolation
across scales, two key ingredients in rigorous model
testing (Tilman & Kareiva 1997).

Discussion

There are four well known hypotheses for the causes of
outbreaks in herbivorous insects. The first is that out-
breaks are driven by interactions with natural enemies,
either through simple prey escape (Southwood &
Comins 1976; Lawton & McNeill 1979; McCann et al.
2000; Maron, Harrison & Greaves 2001) or as a result
of complex interactions with multiple enemies (Dwyer
et al. 2004). The second is that outbreaks are caused by
properties of plant tissues, such as inducible defences
(Edelstein-Keshet & Rausher 1989; Busenberg & Velasco-
Hernandez 1994; Lundberg, Jaremo & Nilsson 1994;
Underwood 1999) or physiological stress (White 1984).
The third is that outbreaks may result if  an insect’s
performance is influenced by the conditions that its
parents and grandparents experienced in preceding
generations (Ginzburg & Taneyhill 1994). The fourth is
that outbreaks are due to environmental forcing
(Elton 1924; Andrewartha & Birch 1954; Hunter &
Price 1998). Although none of these hypotheses explains
all outbreaks, each is undoubtedly correct for some
insects. In presenting a fifth hypothesis, our goal is thus

to provide an explanation for outbreaks in cases for
which food limitation is the most important force driv-
ing insect dynamics. The literature on insect herbivory
suggests that such cases may be common (Monro 1967;
Carson & Root 1999, 2000; McEvoy 2002; Bonsall et al.
2003; Long et al. 2003; Rhainds & English-Loeb 2003).

Under the hypothesis embodied by our models,
the plant–herbivore system oscillates between unstable
equilibria. Between outbreaks, the plant approaches its
herbivore-free equilibrium and the insect is at a very
low density. Outbreaks occur when the insect population
rises toward the limit cycle that surrounds the unstable
coexistence equilibrium. These cycles match qualita-
tive descriptions of plant–herbivore fluctuations more
closely than do classical prey-escape cycles by showing
high plant biomass during the inter-outbreak period
(Table 1). Our models thus support the argument that
vegetation can be abundant even if  plants regulate
herbivores through food limitation (Murdoch 1966;
Ehrlich & Birch 1967).

Our models also survived more rigorous testing
with data for the Solidago–Trirhabda system. When we
estimated the model parameters from data for this
interaction (Appendix S3), all four models correctly
predicted that outbreaks should occur, and accurately
reproduced quantitative features of  outbreak data
(McBrien et al. 1983; Root & Cappuccino 1992). These
results suggest that the models describe the biology of
this system realistically, and support our hypothesis
that food limitation alone can drive insect outbreaks.

Because our main goal has been to establish the
plausibility of a general explanation for insect out-
breaks, we have focused on simple models. Given that
these models provide a closer match to time series of
insect outbreaks than do traditional consumer–resource
models, it appears that they are realistic enough to be
useful (Burnham & Anderson 2002). Moreover, we sus-
pect that including more complicated assumptions
would have only a mild effect on our conclusions. For
example, because our models’ most interesting and
realistic behaviours occur when the insect population
collapses to low densities, demographic stochasticity
could conceivably play a role in plant–herbivore cycles
in nature. The state variables in our models, however,
are densities per unit area; given that outbreaks often
cover very large areas (Liebhold & Kamata 2000), it
seems likely that the absolute number of individual
insects in nature is large enough that demographic
stochasticity is of relatively minor importance.

Similarly, the high degree of synchrony that is typical
of many insect outbreaks (Liebhold, Koenig & Bjørnstad
2004) suggests that our models can be useful even though
they do not include explicit spatial structure. For the
case of the Trirhabda–Solidago interaction, however,
spatial structure might be expected to be especially
important, because at least one Trirhabda species, T.
virgata, increases its emigration rate when defoliation
levels are high (Herzig 1995). Nevertheless, our models
may be approximately correct at the scale of individual

Table 2. Likelihoods and Akaike’s information criterion differences (∆AIC) for the
functions fitted to Solidago–Trirhabda data

Function Equation
Number of 
parameters

Negative log-
likelihood ∆AIC

Plant density dependence
Linear f(Xt) = c1 – c2Xt 2 9·9 12·3
Ricker r × equation 2 2 5·9 4·3
Beverton–Holt r × equation 3 2 3·7 0

Effect of insect on plant†
Linear g(Yt) = c1 – c2Yt 2 –5·6 0·1
Type II Equation 4a 2 –5·7 0
Type III Equation 5a 2 –5·3 0·7

Effect of plant on insect
Linear through origin h(Xt) = c1Xt 1 44·0 12·0
Linear h(Xt) = c1 + c2Xt 2 38·7 3·4
Type II Equation 4b 2 37·3 0·6
Type III Equation 5b 2 37·0 0

Models with AIC differences = 0 are the best-fitting models. For models not described 
in the text, c1 and c2 represent fitted parameters. For models with negative slopes (plant 
density dependence and effect of insect on plant), we do not attempt to force the linear 
functions through the origin because this would prohibit positive values for the 
functions. The fitted non-linear functions are shown plotted with the data in 
Appendix S3.
†These AIC differences were calculated using AICC values, which are corrected for small 
sample size.
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Solidago stands, because density-dependent emigration is
equivalent to the density-dependent death that is already
part of the models. More generally, extending the models
to allow for spatial structure, including density-dependent
dispersal, has confirmed the qualitative results presented
here (Abbott 2006).

A final simplifying assumption is that edible plant
biomass in a given generation is dependent on the
previous year’s edible biomass. While this assumption
is appropriate for forbs (Bradbury 1981; Hartnett &
Bazzaz 1985; Hartnett 1990; Meyer & Schmid 1999), it
is not strictly true for woody plants, in that energy
stored in the trunk and roots of trees contributes to the
production of new edible foliage. Continuous time
models can be stabilized completely by a reserve of
inedible biomass (Turchin 2003), but simulations show
that this is not the case for our models (K.C.A., unpub-
lished data). Although outbreaks appear to occur over
a smaller range of parameter values when we modify
our models to allow for inedible biomass storage, the
models still produce the same range of behaviours as
the simpler models presented here. This suggests that
our results can be qualitatively correct for outbreaks on
woody plants, and Table 1 confirms that outbreaks
in forests often show the same temporal pattern of
defoliation as outbreaks on forbs.

The long-standing debate surrounding the role of
plants in regulating herbivore populations (Hairston
et al. 1960; Murdoch 1966; Ehrlich & Birch 1967) has
been perpetuated by a lack of agreement over what we
expect the dynamics of food-limited herbivores to be.
In constructing simple models, one of our goals has
been to provide quantitative predictions for the behavi-
our of food-limited herbivore populations with discrete
generations. We have thus demonstrated that non-
linearities in food limitation can drive herbivore
fluctuations, and that this should be considered as a
possible explanation for insect outbreaks. Because our
models generate quantitative, testable predictions, our
hope is that they can be used by empiricists to identify
when food limitation is driving insect outbreaks in nature.
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