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abstract: In many forest insects, subpopulations fluctuate con-
currently across large geographical areas, a phenomenon known as
population synchrony. Because of the large spatial scales involved,
empirical tests to identify the causes of synchrony are often im-
practical. Simple models are, therefore, a useful aid to understanding,
but data often seem to contradict model predictions. For instance,
chaotic population dynamics and limited dispersal are not uncom-
mon among synchronous forest defoliators, yet both make it difficult
to achieve synchrony in simple models. To test whether this dis-
crepancy can be explained by more realistic models, we introduced
dispersal and spatially correlated stochasticity into a mechanistic pop-
ulation model for the North American gypsy moth Lymantria dispar.
The resulting model shows both chaotic dynamics and spatial syn-
chrony, suggesting that chaos and synchrony can be reconciled by
the incorporation of realistic dynamics and spatial structure. By re-
lating alterations in model structure to changes in synchrony levels,
we show that the synchrony is due to a combination of spatial co-
variance in environmental stochasticity and the origins of chaos in
our multispecies model.

Keywords: spatial synchrony, Lymantria dispar, difference equation
model, dispersal kernel, correlated environmental stochasticity, route
to chaos.

Many outbreaking forest insects show high levels of spatial
synchrony, in which booms and busts occur at roughly
the same time in different locations (Hanski and Woiwood
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1993; Liebhold et al. 2000; Liebhold and Kamata 2000;
Peltonen et al. 2002; Raimondo et al. 2004; Johnson et al.
2005). Because of the vast geographical areas involved,
identifying the cause of synchrony is difficult without
mathematical models. For example, models have shown
that population synchrony can be caused by a combination
of spatially correlated weather and dispersal among pop-
ulations (reviewed in Bjørnstad et al. 1999; Hudson and
Cattadori 1999; Koenig 1999; Liebhold et al. 2004). The
extent of synchrony, however, can be strongly affected by
temporal fluctuations in population density. Specifically,
models that show chaotic temporal fluctuations tend to
display low synchrony unless dispersal or spatial correla-
tions in weather are very high (Grenfell et al. 1998; Lande
et al. 1999; Bjørnstad 2000; Earn et al. 2000; Kendall et
al. 2000; Engen and Sæther 2005). This result is surprising,
since previous work by G. D. and colleagues has suggested
that forest insect populations, which do exhibit synchrony,
often undergo chaotic or chaos-like fluctuations (Dwyer
et al. 2004).

One explanation for this contradiction is that most
models of spatial synchrony make very simple assumptions
about local dynamics, spatial structure, and dispersal and
are thus far simpler than nature. The conclusion that cha-
otic dynamics require high dispersal or strong environ-
mental correlations to produce synchrony may therefore
not hold for more realistic models. To explore this pos-
sibility quantitatively, in this article we use the gypsy moth
Lymantria dispar (Lepidoptera: Lymantriidae) as a case
study of whether a more detailed model can explain syn-
chrony over large spatial scales. Our approach is to employ
a well-studied temporal model for forest insect dynamics
and to combine it with realistic dispersal rules and realistic
levels of spatial correlation in environmental stochasticity.
Although our model uses parameter values estimated for
the gypsy moth, we emphasize that it is in fact quite general
and could be applied to a wide variety of forest insects.

The gypsy moth is a forest defoliator that reaches out-
break density about every 10 years in its invasive range in
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the northeastern United States and southeastern Canada
(Liebhold et al. 2000). Population fluctuations are roughly
synchronous in the sense that correlation coefficients are
positive among populations that are hundreds of kilo-
meters apart (Peltonen et al. 2002; Johnson et al. 2005).
Gypsy moth demography is density dependent and is in-
fluenced by weather, disease, and predation (Waggoner
1985; Williams and Liebhold 1995a, 1995b; Elkinton et al.
1996; Dwyer et al. 1997; Nealis et al. 1999; Andresen et
al. 2001). We seek to understand how these factors interact
with dispersal and regional correlations in weather patterns
to produce regionwide correlations in gypsy moth den-
sities. Previous approaches to studying synchrony have
generally relied on statistical summaries of observational
data or have used models that are so simple that they are
unlikely to describe any real systems. Our approach instead
is to use a temporal model that has survived extensive
empirical testing and for which parameter estimates for
the gypsy moth are available (Dwyer et al. 1997, 2000,
2004). To this model we add dispersal and environmental
stochasticity and we ask whether the processes included
in our model can explain observed correlations in gypsy
moth populations. We find that our model, despite dis-
playing chaotic dynamics, is readily synchronized by cor-
related stochasticity. Our results suggest that gypsy moth
synchrony is due to a combination of multispecies inter-
actions at the local scale and regional correlations in the
weather. More broadly, our study reconciles the obser-
vation that the population dynamics of many forest insects
seem to be both chaotic and synchronous, a combination
that could not be readily explained by previous studies.

Methods

Gypsy Moth Population Dynamics

The two most important groups of natural enemies af-
fecting gypsy moth population dynamics are specialist
pathogens and generalist predators and parasitoids (El-
kinton and Liebhold 1990; Elkinton et al. 1996). Therefore,
we began with the model of Dwyer et al. (2004) that de-
scribes gypsy moth population dynamics as a function of
a host-pathogen interaction and generalist predation. In
this model, gypsy moth outbreaks occur when the insect
moves between a low-density equilibrium maintained by
predation and a large-amplitude cycle driven by pathogen
infection. This model reproduces many temporal aspects
of gypsy moth dynamics, such as large-amplitude out-
breaks with highly irregular timing (Dwyer et al. 2004).
Extending the model to allow for spatial structure gives
the following model:

′2abNi, t�1′N p � lN (1 � I ) 1 � , (1a)i, t i, t i, t�1 i, t�1 2 ′2( )b � Ni, t�1

′Z p f N I , (1b)i, t i, t�1 i, t�1

with the fraction of individuals infected by the specialist
viral pathogen, Ii, t, given by

�k

n̄ ′ ′1 � I p 1 � (N I � hZ ) . (1c)i, t i, t i, t i, t[ ]mk

Here, Ni, t and Zi, t are the predispersal densities of hosts
and specialist viral pathogens in patch i at the end of
generation t, and N ′

i, t and Z ′
i, t are postdispersal densities,

with dispersal occurring immediately prior to the start of
each generation.

In equation (1a), l represents gypsy moth population
growth at low density and takes into account both fecun-
dity and density-independent mortality. The random var-
iable �i, t represents environmental stochasticity and is dis-
cussed in greater detail below. The parameter a is the
maximum fraction of the gypsy moth population killed
by predators, whereas b is the insect density at which the
predation rate is maximized. We assume that predation
follows a Type III functional response, as represented by
the term , the fraction of hosts′ 2 ′21 � (2abN )/(b � N )i, t�1 i, t�1

to escape consumption by generalist predators. For gypsy
moths, efforts to document a Type III functional response
using experiments have been unsuccessful for at least some
generalist predators (Elkinton et al. 2004). However, for
many forest insects, including gypsy moths, observational
data have shown that low-density populations tend to fluc-
tuate around a stable equilibrium (Elkinton et al. 1996;
Dwyer et al. 2004), which is consistent with a Type III but
not a Type II response. Moreover, there is good evidence
of Allee effects ahead of the advancing front of the gypsy
moth invasion (Johnson et al. 2006; Whitmire and Tobin
2006), similarly consistent with a Type III but not a Type
II response. In short, because we are attempting to explain
population dynamic phenomena and because data col-
lected at the population level support a Type III but not
a Type II functional response, we use a Type III functional
response in our model.

A fraction f of the virus population overwinters through
the environmental contamination of egg masses (Murray
and Elkinton 1989, 1990). As larvae hatch in the spring
from virus-contaminated eggs, some become infected,
reintroducing the virus into the host population (only lar-
vae can become infected). Given this initial input of virus,
the fraction of hosts that become infected in the epidemic
is then described by the implicit solution of equation (1c).
This equation, in turn, is derived from a differential equa-
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tion model that describes the dynamics of the epidemic
within the larval population and that has survived repeated
confrontations with both experimental and observational
data (Dwyer et al. 1997, 2000, 2005). A key feature of the
epidemic model is that it includes heterogeneity in sus-
ceptibility in the form of a distribution of transmission
rates with mean and inverse-squared coefficient of var-n̄

iation k. The model assumes that the effects of small pop-
ulation sizes on virus epidemics are negligible, which is a
reasonable assumption in the outbreaking gypsy moth
populations in which epidemics occur. The effects of het-
erogeneity in susceptibility are, therefore, deterministic in
our model. The model also allows for the breakdown of
the pathogen on foliage at rate m, and the higher suscep-
tibility of hatching larvae relative to later-stage larvae is
accounted for by the parameter h in equation (1c) (Wa-
tanabe 1987). Nondimensionalization shows that f and h

affect the dynamics only as the product fh. Likewise, the
composite parameter fully accounts for the dynamical¯bn/m
effects of b, , and m. In what follows, we therefore refern̄

to f and h only as fh, which, roughly speaking, is the over-
winter impact of the pathogen, and we refer to b, , andn̄

m only as , which gives the ratio of the insect density¯bn/m
at maximum predation (b) to the minimum insect density
required to start a virus epidemic ( ).¯m/n

Using empirically derived estimates for the parameter
values ( , , , , and¯l p 74.6 fh p 60 a p 0.967 bn/m p 0.14

[Elkinton et al. 1996; Dwyer et al. 1997, 2004])k p 1.06
and in the absence of dispersal and environmental sto-
chasticity ( for all values of i and t), equations� p 1i, t

(1a)–(1c) show chaotic population fluctuations (Dwyer et
al. 2004). When stochasticity is included, the fluctuations
show chaos-like behavior for a broader range of parameter
values (Dwyer et al. 2004), a phenomenon that some have
termed “noise-induced chaos” (Ellner and Turchin 2005).
The temporal model thus provides a useful example of an
empirically tested, mechanistic model with which to test
the effects of chaos on synchrony.

To allow for spatial structure and, thus, synchrony, we
assumed that populations resided in a grid of50 # 50
discrete habitat patches connected by dispersal. The
patches were scaled such that they covered an area of

. We assumed that the boundaries1,000 km # 1,000 km
of the grid were reflecting, so that all individuals who
dispersed outside the grid were replaced by an equal num-
ber of immigrants from unmodeled populations assumed
to exist around the grid. Given the large scale of our sim-
ulations relative to the rate of dispersal, it is unlikely that
this assumption had much effect on our results.

Larval gypsy moths disperse locally by ballooning (Col-
lins 1917), whereas individuals in other life stages, espe-
cially egg masses, can be transported over longer distances
by humans (Liebhold et al. 1992). Irrespective of the dis-

persal mechanism, it is highly likely that the fraction of
individuals that move a given distance declines roughly
continuously with distance (Kot et al. 1996). Because our
main interest is in large-scale synchrony, we included only
long-distance dispersal. Indeed, the typical larval balloon-
ing distance is much less than 50 m (Hunter and Elkinton
2000), whereas populations in our simulations were sep-
arated by 20 km. Ballooning, therefore, has little effect on
synchrony at the scale of our simulations (Abbott 2006).
Note that our model does not assume that there is no local
dispersal, but instead that local dispersal is high enough
within a grid cell that hosts and pathogens are well mixed.
To mimic the long-distance movement of egg masses on
humans’ vehicles, we assumed that a small fraction q of
each population was transported to other patches between
the time the egg masses were laid in the autumn of year

and when they hatched in the spring of year t. Int � 1
virus epidemics, contamination of egg masses is wide-
spread, so it is likely that the virus disperses in this way
as well.

We used an exponential function to describe the dis-
tance traveled by dispersing individuals. Because our
model describes discrete patches, the probability of dis-
persing between grid cells i and j was determined by the
discretized exponential kernel

k(d ) p k exp (�D d ). (2)i, j k i, j

In equation (2), di, j is the distance in kilometers between
populations i and j and Dk determines how steeply the
fraction of individuals moving from i to j declines with
increasing distance between the populations. The variable
k is a scaling constant that forces the fractions dispersing
all possible distances to sum to 1. We calculated k by first
defining dispersal to be possible for any value di, j for which

. We then arranged habitat patches on�10exp (�D d ) ≥ 10k i, j

a square grid large enough that the distance from the center
cell c to the edge of the grid exceeds the farthest possible
dispersal distance. We computed for all j onexp (�D d )k c, j

this grid to which dispersal from c was possible, and we
summed these values to find . In equation (2), we set1/k
k(di, j) equal to 0 for values of di, j such that

. In our simulations, we used the val-�10exp (�D d ) ! 10k i, j

ues and . These are maximum like-�5q p 10 D p 0.175k

lihood values estimated by Fujita (2007) to simultaneously
explain spatial structure in the allele frequencies of the
gypsy moth’s virus and observed rates of gypsy moth range
expansion. Fujita (2007) fitted a stratified dispersal kernel
that accounted for both short- and long-distance move-
ment. As explained above, short-distance movement (by
larvae) occurs at a small enough spatial scale that move-
ment between populations in our simulation is extremely
unlikely. In our dispersal kernel, equation (2), we therefore
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Table 1: Correlation coefficients for the values of �i, t drawn in
our simulations and for some real weather variables at different
distances

Distance (km) �i, t

Monthly
precipitation

Date of last
spring frost

No. days
!�26�C

100 .46 .48 .32 .67
300 .22 .40 .19 .55
500 .10 .21 .08 .53

Note: Data were obtained from the National Oceanic and Atmospheric

Administration from weather stations covering part of New England (i.e.,

Maine, New Hampshire, Vermont, and Massachusetts) over which gypsy moth

populations outbreak in synchrony (Liebhold et al. 2000). We fitted non-

parametric correlation functions (Bjørnstad and Falck 2001; R Development

Core Team 2005) and report here the mean correlations at several distances

for some of the weather variables that are believed to influence gypsy moth

populations: precipitation (Williams and Liebhold 1995a, 1995b); spring

frosts, which influence the timing of early spring events such as tree budburst

and gypsy moth egg hatch (Hunter and Elkinton 2000); and temperatures

that drop below what appears to be a physiological threshold at �26�C (Wag-

goner 1985).

use only the long-distance piece of Fujita’s best-fit strat-
ified kernel.

At the start of each simulation, all habitat patches were
empty except for three cells in the center of one edge of
the grid. These initial conditions mimic the gypsy moth
invasion in North America, which spread north, south,
and west from its starting point in Massachusetts (Liebhold
et al. 1989). We then ran simulations for 100 generations,
which is on the order of how long the gypsy moth has
been invading North America. Analyses were performed
on the last 20 years from each of 25 replicate simulations,
and we present the results averaged across realizations.

Overwhelming empirical evidence has shown that gypsy
moth populations are influenced by weather (Waggoner
1985; Williams and Liebhold 1995a, 1995b; Nealis et al.
1999; Hunter and Elkinton 2000; Andresen et al. 2001).
Because many weather variables are spatially correlated
and because the correlation is greater at shorter distances
(Koenig 2002; Peltonen et al. 2002), we assumed that the
covariance of the environmental stochasticity experienced
by two populations in a given year declined with the dis-
tance between those populations. To allow for this cor-
relation, we write �i, t in equation (1a) as a lognormally
distributed random variable:

� p exp (M (i)), (3a)i, t t

2C p c exp (�D d ), (3b)i, j � i, j

where Mt(i) is the ith element of a multivariate normal
random variable drawn in year t with a mean value of 0
and variance-covariance matrix , the elements of whichC
are given in equation (3b). As above, di, j is the distance
in kilometers between population i and population j. It is
very difficult, if not impossible, to determine values for c
and D� empirically, so we ran simulations under many
different combinations of values. For the simulations we
present here, we used and , under�3c p 1.5 D p 3.3 # 10�

which the model produces levels of gypsy moth synchrony
that agree well with data on the insect. With these param-
eter values, correlations among �i, t for patches separated
by different distances are within the range of correlations
observed in real weather data (table 1). Our simulated
environmental correlations are, in fact, on the low end of
the range observed in the data. Given that we argue that
synchrony is largely driven by weather, this means that
our assumptions about c and D� are conservative.

Statistical Methods

To quantify regional synchrony, we used a modified cor-
relogram (after Koenig 1999) in which the distances be-
tween pairs of populations were divided into discrete dis-

tance classes and the average pairwise correlation
coefficient between population trajectories was plotted for
each distance class. We created these distance classes such
that each class contained at least 2,500 correlation coef-
ficients (i.e., 2,500 pairs of populations). The correlation
coefficients we present were calculated on the basis of
annual differences in log abundances in the simulated time
series. In other words, for each simulated population we
constructed a time series of transitions, (log N �10 i, t�1

. We then calcu-log N ), (log N � log N ), …10 i, t 10 i, t�2 10 i, t�1

lated a Pearson’s correlation coefficient for this series of
transitions among each pair of populations. This approach
allows us to directly compare our results to those of pre-
vious analyses of gypsy moth data that used the same
method (Peltonen et al. 2002; Johnson et al. 2005).

Most standard statistical tests cannot be applied to mea-
sures of synchrony among population trajectories because
time series data are temporally autocorrelated (Buonac-
corsi et al. 2001) and because the set of all pairwise pop-
ulation comparisons is not a set of independent data points
(Koenig 1999). Bootstrapping algorithms that resample the
sources of randomness in the population trajectories have
been proposed to compensate for these dependencies
(Bjørnstad and Falck 2001; Buonaccorsi et al. 2001; Lil-
legård et al. 2005). We used this type of approach by sim-
ulating our model 25 times and using different draws from
the distribution of �i, t to generate environmental stochas-
ticity in each realization, as that is the source of random-
ness in our model. We then present the mean correlation
coefficient for each distance class on the basis of the 25
iterations and the 95% confidence interval about this mean
correlogram.
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Interpreting the Simulation Results

The goal of our study was to test whether a biologically
motivated model can reproduce observed levels of insect
synchrony under realistic assumptions about dispersal and
environmental correlations. As explained in the introduc-
tion to this article, such synchrony is not expected under
classical population models, so it is important to explore
why our model behaves differently. We therefore carried
out additional simulations of our model with some of the
assumptions altered to identify the components of the
model that are responsible for the degree of synchrony
that the model displays.

Dispersal and correlated environmental stochasticity
each potentially synchronize the subpopulations in our
model. To understand the contributions of these two syn-
chronizing agents, we ran additional simulations with ei-
ther dispersal or correlated stochasticity removed. Because
gypsy moths are an invasive species in North America, in
our original simulations we began with gypsy moth pop-
ulations resident in only three grid cells so that the re-
maining cells were subsequently colonized by dispersing
individuals. If we simply set the fraction of the population
that disperses q to 0, the grid would remain empty aside
from the three initially occupied cells. We therefore elim-
inated dispersal in two different ways. First, we allowed
individuals to disperse until the entire grid was colonized,
then we set for the remainder of the time steps.q p 0
Second, we used nonzero initial conditions in all the grid
cells and set for the entire simulation. In this latterq p 0
case, we used randomly chosen initial densities that were
near the attractor of the nonspatial version of equation
(1). To eliminate the effects of correlated stochasticity, we
simply set all of the off-diagonal elements of the variance-
covariance matrix C (eq. [3b]) to 0.

Next, we tested how the maximum covariance in the
environment (c 2) and the rate at which the covariance
declines with distance (D�) affect the resultant population
synchrony. We ran simulations in which the maximum
covariance was lower ( ) or the covariance declinedc p 0.5
10 times as fast with distance ( ). It is gen-�2D p 3.3 # 10�

erally very difficult to directly measure the environment’s
effect on a population, so our additional simulations pro-
vide meaningful information about how the properties of
�i, t influence population synchrony.

Preliminary simulations suggested that synchrony
among invaded patches is higher at the early stages of the
gypsy moth invasion, so we ran additional simulations for
50, rather than 100, years. We also examined simulations
that ran for 200 and 500 years. Finally, we tested the sen-
sitivity of our results to the coarseness of our population
grid by dividing the habitat into1,000 km # 1,000 km

either a patch or a patch grid of pop-20 # 20 100 # 100
ulations, rather than a patch grid.50 # 50

Most nonlinear discrete-generation models in the lit-
erature follow the period-doubling or the quasi-periodic
route to chaos (Rasband 1990; Kuznetsov 1995). In con-
trast, the chaos in our temporal model appears to be in-
fluenced by the occurrence of a chaotic repeller for nearby
parameter values. Chaotic repellers occur as a result of
interactions among multiple attractors (Tél 1990). In our
spatial simulations, we set the pathogen overwintering im-
pact , which results in a global chaotic attractor.fh p 60
To see the influence of the chaotic repeller, we can instead
set , for which the model has multiple attractors,fh p 20
including a stable point equilibrium, a phase-locked limit
cycle, a quasi-periodic attractor, and a saddle point (Dwyer
et al. 2004). The stable point equilibrium is maintained at
low density by predation, whereas the limit cycle and the
quasi-periodic attractors are associated with a high-density
equilibrium maintained by the pathogen. As fh is in-
creased, however, the low-density equilibrium undergoes
a series of period doublings that produce a small-ampli-
tude global attractor, but this global attractor coexists with
a large-amplitude chaotic repeller. As is characteristic of
chaotic repellers, most population trajectories take many
generations to approach the global attractor, and during
this transient period, they are chaotic even though the
attractor itself is not chaotic (Tél 1990). This transient
chaos can be sustained by the addition of a small amount
of stochasticity (Ellner and Turchin 2005), which leads to
large-amplitude, chaos-like fluctuations about the global
attractor. As fh is increased still further, the large-ampli-
tude chaotic repeller becomes a global chaotic attractor,
and this is apparently the attractor produced by the pa-
rameter values that we used in our spatial simulations.
Numerical evidence thus suggests that the chaos in our
model is approached by way of a chaotic repeller, in con-
trast to the more commonly studied period-doubling or
quasi-periodic routes.

In the absence of predation, other parameter values pro-
duce different routes to chaos, such as period doubling
and quasi periodicity, as well as chaos that is associated
with nonstandard or degenerate quasi-periodic cycles due
to strong resonances or homoclinic orbits (Kuznetsov
1995; G. Dwyer, unpublished results). Period doubling is
the route to chaos characteristic of the single-species mod-
els that have been the focus of most previous work on
synchrony and chaos (e.g., Allen et al. 1993; Ranta et al.
1998, 1999; Bjørnstad 2000; Greenman and Benton 2001).
In multispecies models, chaos is also often reached through
the quasi-periodic route (Rohani et al. 1994; Kot 2001).
In order to test the importance of the route to chaos in
allowing synchrony, we ran additional simulations of the
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Figure 1: Average population synchrony at different distances. The solid
line shows our simulation result and dashed lines represent the 95%
confidence intervals (CIs) calculated from our 25 replicate simulations.
The circles (with error bars showing 95% CIs) are estimates obtained
from 20 years of gypsy moth data by Peltonen et al. (2002).

Figure 2: Average population synchrony without dispersal (light gray,
medium gray) or without correlated stochasticity (dark gray). The model
and data from figure 1 are replotted in black for comparison. Two models
with no dispersal were considered; see “Interpreting the Simulation Re-
sults” for details. The inset gives a closer view of long-distance synchrony,
with the model lacking correlated stochasticity removed to emphasize
the relationships among the other three models. I.C. p initial conditions.

host-pathogen-only model with parameter values that give
chaos that is associated with these alternative routes.

The full host-pathogen-predator model exhibits long-
period fluctuations in density, matching the long-period
fluctuations of gypsy moth populations in nature. In con-
trast, chaotic fluctuations in the host-pathogen-only model
have shorter periods except when chaos is due to a homo-
clinic loop (G. Dwyer, unpublished results). In a homo-
clinic loop, trajectories following the unstable manifold of
a saddle point, which is near the origin in our model,
reconnect with the stable manifold of the saddle point,
leading to cycles that can have a very long period (Kuz-
netsov 1995). Unfortunately, long-period chaotic fluctu-
ations in the host-pathogen-only model are only weakly
chaotic (G. Dwyer, unpublished results), so we were unable
to simultaneously match both the long period and strong
chaos of the full model using an alternative route to chaos.
Nonetheless, simulating the host-pathogen-only model for
parameter values giving a long-period homoclinic loop
allowed us to see whether it is the long period of our full
model’s chaotic fluctuations, rather than the route to chaos
per se, that permits synchrony.

We quantified the strength of chaos using the Lyapunov
exponent of the within-population dynamical model,
which describes the tendency of two model trajectories to
grow apart, given that they start close together. If the Lya-
punov exponent is positive, the model is chaotic, and
larger exponents indicate stronger chaos.

Results

The correlogram produced by our stochastic spatial model
closely matches published data on gypsy moth synchrony
(fig. 1; data from Peltonen et al. 2002). This synchrony in
the model appears to be driven by correlations in the
environment, because simulations run with an uncorre-
lated environment were asynchronous (fig. 2, dark gray
line). Simulations with no dispersal were as synchronous
as the full simulation, except perhaps at very long dis-
tances, where the correlations for the models without dis-
persal began to drop below the 95% confidence interval
for the full model (fig. 2, medium and light gray lines).

Changing the values of c and D� in equation (3), the
only parameters for which we had no empirical estimates,
had some effect on the correlogram. As one would expect,
reducing the maximum covariance c or increasing the rate
of decline of the covariance with distance by reducing D�

causes the population synchrony to be weaker than the
synchrony in the data (fig. 3, gray lines). Because it is not
possible to independently estimate c and D� (see “Dis-
cussion”), we have approached the problem of unknown
environmental correlations by determining how correlated
the environment would need to be to explain population
synchrony and then asking whether that level of correla-
tion is realistic (following Grenfell et al. 1998). We there-
fore adjusted c and D� until there was agreement between
our simulated populations and the gypsy moth data. To
independently assess whether the resulting values of c and
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Figure 3: Average population synchrony under different environmental
conditions. The black line shows the simulation from figure 1: ,c p 1.5

; the darker gray line shows a simulation with lower�3D p 3.3 # 10�

maximum covariance in �i, t: , ; and the lighter�3c p 0.5 D p 3.3 # 10�

gray line shows a simulation with a sharper decrease in the covariance
in �i, t with distance: , .�2c p 1.5 D p 3.3 # 10�

Figure 4: Average population synchrony predicted by versions of our
model that have different assumptions about time and space. The model
and data from figure 1 are shown again (circles and black solid line), and
variants of that model are shown with dashed and dotted lines. The
original model was run on a grid of populations for 100 gen-50 # 50
erations. The following variants were considered: smaller ( ) or20 # 20
larger ( ) population grids; shorter (50 generations) or longer100 # 100
(200 and 500 generations) simulations. Confidence intervals for these
simulations are not shown because of the large number of lines plotted
in this figure.

D� were realistic, we compared the spatial correlations in
the random variates produced by the model to spatial
correlations in weather data (table 1), on the assumption
that weather fluctuations are the most likely driver of sto-
chasticity in gypsy moth populations. Reassuringly, there
is a good correspondence between the two.

Our conclusions appear to be robust to changes in most
of our other assumptions (fig. 4). Simulations run for 200
or 500 years showed the same levels of synchrony as the
simulation run for 100 years, although population syn-
chrony was greater at all distances when simulations were
run for only 50 years. When we divided the habitat into
a or grid of populations, rather than20 # 20 100 # 100
a grid, the correlogram was again essentially50 # 50
unchanged.

We also simulated the host-pathogen-only model using
unrealistic parameter values that produced different routes
to chaos. As in previous studies, when chaos was reached
through period doubling, synchrony was quite low relative
to the data (fig. 5, cases 1 and 3). For chaos reached
through quasi periodicity, the model again showed much
lower synchrony than in the data (fig. 5, case 4). The same
was true for degenerate quasi periodicity caused by strong
resonance (fig. 5, case 2) or a homoclinic loop (fig. 5, case
5). Therefore, it appears that the chaotic repeller of the
full host-pathogen-predator model is unique in permitting
both chaos and realistic synchrony. This is particularly
striking because the chaos in our full model was substan-
tially stronger than the chaos reached by some of our

alternative routes (fig. 5, cases 3–5). We cannot say with
certainty that the route to chaos per se, rather than the
combination of strong chaos and long period, permitted
synchrony in our full model, since we were unable to
mimic this combination using an alternative route to
chaos. If the long period does contribute to synchrony,
however, we are unable to suggest an explanation that is
independent of route to chaos for why strongly chaotic
long-period fluctuations (fig. 1, full model) should be
more synchronous than very weakly chaotic long-period
fluctuations (fig. 5, case 5). Clearly, the question of how
routes to chaos affect synchrony is poorly understood, but
it appears to be the case that route to chaos plays an
important role in allowing synchrony when the temporal
dynamics are chaotic.

In spatial models, it is possible for dispersal to cause
qualitative changes to within-patch population dynamics
that often result in simpler or more stable dynamics (e.g.,
Gurney and Nisbet 1976; Reeve 1988; Hastings 1993;
Amarasekare 1998; Ruxton and Rohani 1999). If popu-
lations in our spatial model are exhibiting different dy-
namics, then the spatial model might no longer give an
accurate representation of local gypsy moth populations.
To check whether this was the case, we compared a phase
plot for the nonspatial model to a phase plot for one
population within the spatial model. The plots were vir-
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Figure 5: Comparison of levels of synchrony exhibited by simulations
with different mean outbreak periods, strengths of chaos, and routes to
chaos. A, Filled circles represent cases in which chaos is reached through
period doubling and open circles represent cases in which the route to
chaos is quasi periodicity (cases 2 and 5 are degenerate). Each circle
corresponds to the line in B marked with the same number. In all cases,

; other parameters are, for case 1: , , ;a p 0 l p 74.6 fh p 0.01 k p 3.85
for case 2: , , ; for case 3: , ,l p 21 fh p 1 k p 5 l p 74.3 fh p 0.01

; for case 4: , , ; and for case 5: ,k p 3.81 l p 15 fh p 5 k p 3 l p 3
, . For reference, the outbreak period and Lyapunovfh p 160 k p 1.25

exponent are marked with a cross for the full host-pathogen-predator
model with empirical parameter estimates ( , ,l p 74.6 fh p 60 a p

, , ). The correlogram for this reference case¯0.967 bn/m p 0.14 k p 1.06
is shown in figure 1.

tually identical (not shown), suggesting that dispersal in
the spatial model did not cause a qualitative change to
within-patch dynamics.

Our simulated gypsy moth invasion spread at an average
rate of 15.1 km year�1, which agrees with an analysis by
Liebhold et al. (1992) showing that the rate of spread of
the gypsy moth invasion in North America has historically
ranged from 2.8 to 20.8 km year�1. This result is not sur-
prising, because the parameter estimates for our long-
distance dispersal kernel came from an analysis that was,
in part, aimed at fitting observed rates of spread (Fujita

2007). More interesting is the result from our simulations
that the invasion advanced in pulses. We saw intermittent
peaks in the number of new grid cells colonized per gen-
eration, with an average dominant period of 3.7 years.
Johnson et al. (2006) showed that gypsy moths have sig-
nificant invasion pulses with a 4-year period and suggested
that this is due to a combination of an Allee effect and
long-distance movement by a small portion of the pop-
ulation. Both of these mechanisms are present in our
model, since the density-dependent predation term in
equations (1a)–(1c) causes small gypsy moth populations
to decline, producing an Allee effect. Thus, our simulations
agree with empirical estimates not only of synchrony but
also of the average rate of spread and of the temporal
variability in the spread rate of the gypsy moth.

Discussion

It is difficult, using existing ecological theory, to reconcile
strong synchrony with the apparent chaos of forest insect
populations. Previous theoretical investigations have
found that populations governed by chaotic or strongly
nonlinear dynamics cannot be synchronized by moderate
levels of correlated stochasticity (Allen et al. 1993; Grenfell
et al. 1998; Greenman and Benton 2001), unless dispersal
is extremely high (Ranta et al. 1998, 1999). A key feature
of our study is that we used a multispecies population
model, whereas most previous studies have instead used
simple single-species models (Allen et al. 1993; Ranta et
al. 1998, 1999; Bjørnstad 2000; Greenman and Benton
2001). This is important because single-species models can
reach chaos by the period-doubling route, but they cannot
have quasi-periodic attractors and therefore cannot reach
chaos by the quasi-periodic route. Rohani and Miramontes
(1995) demonstrated that chaotic dynamics that are
reached by these two different routes respond very dif-
ferently to the addition of an immigration term. It seems
likely that the route to chaos could also have an effect on
other spatial phenomena, such as synchrony. Chaotic
single-species models might therefore have requirements
for synchrony that are different from those of chaotic mul-
tispecies models. More directly, the few studies that look
specifically at synchrony in multispecies models have not
reached a consensus on whether chaotic multispecies sys-
tems resist synchrony as strongly as do chaotic single-
species systems. Blasius et al. (1999) found a high incidence
of phase synchrony (which is distinct from, but related to,
the concept of synchrony that we use here) in a chaotic
tritrophic model. In contrast, Gao et al. (2007) reported
low synchrony in chaotic host-parasitoid dynamics. Most
studies of synchrony in multispecies models, meanwhile,
have focused on fundamentally different questions, such
as how the movement of one species can induce synchrony
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in a species with which it interacts (Ims and Steen 1990)
or how multispecies interactions change the overall shape
of the synchrony-distance relationship (Ranta et al. 1997;
Bjørnstad and Bascompte 2001).

Our results suggest that the route to chaos affects syn-
chrony in that only the host-pathogen-predator model,
with its chaotic repeller route, showed realistic levels of
synchrony. All other routes to chaos, whether by period
doubling or by quasi periodicity, showed lower synchrony
(fig. 5), in keeping with previous results from single-
species models. Although we suspect that route to chaos
is important, it is worth considering whether removing
generalist predation necessarily reduces synchrony, since
we used the host-pathogen-only model to explore the al-
ternative routes to chaos. For many parameter values, the
host-pathogen-only model exhibits limit cycles. Interest-
ingly, these limit cycles may produce synchrony that is
either higher or lower than what is observed, depending
on the parameter values. Because some host-pathogen-
only limit cycles do show high synchrony, we conclude
that removing generalist predation does not necessarily
reduce synchrony and that route to chaos indeed appears
to be the key feature underlying the lower synchrony of
chaotic host-pathogen-only simulations.

In the host-pathogen-predator model, attractors asso-
ciated with multiple equilibria merge to form the chaotic
attractor. The component attractors include a predator-
driven, small-amplitude, short-period cycle produced by
period doubling and two pathogen-driven, large-ampli-
tude, long-period cycles produced by a Hopf-type bifur-
cation. As the population trajectory moves around the
global chaotic attractor, it appears to visit the regions of
the global attractor that are influenced by each of these
component equilibria. The insect and pathogen popula-
tions apparently switch erratically between the component
equilibria, and environmental stochasticity enhances this
behavior by promoting random switching (Dwyer et al.
2004). When the switching is partly or entirely due to
environmental stochasticity, we speculate that correlations
in the environment may be especially effective at inducing
synchrony. The role of multiple equilibria in producing
chaos in our model may therefore make it particularly
prone to synchronization by correlated stochasticity.
Moreover, complex dynamics that are driven by multiple
coexisting equilibria and environmental stochasticity may
be common in multispecies interactions (e.g., Hall et al.
2005; Abbott and Dwyer 2007; Ives et al. 2008). Whether
other such models also show high synchrony is therefore
an exciting avenue of future research.

Relevant to the discussion of when models can and
cannot show synchrony is the work of Earn et al. (2000),
who studied analytical conditions for coherence caused by
dispersal (see also Earn and Levin 2006). When densities

in different subpopulations are equal or within a small
percentage of each other, they are said to be coherent.
Earn et al. (2000) showed that the strength of chaos, but
not the particular route to chaos, affected the possibility
of coherence in deterministic models, and their results
were found to be quite robust to the addition of uncor-
related stochasticity. How the conditions for coherence
change with the introduction of correlated stochasticity,
however, remains an open question. Most importantly,
with regard to our results, it is unknown whether the route
to chaos should remain unimportant when coherence is
caused by correlated stochasticity rather than dispersal.

A basic assumption of our model is that all populations
are governed by the same underlying deterministic model
with the same demographic parameter values. In contrast,
Liebhold et al. (2006) found geographical variation in
gypsy moth demographic rates and used a linear model
to show that such variability can sometimes reduce the
strength of population synchrony due to environmental
correlation. In preliminary simulations of our nonlinear
demographic model, however, we found no such reduction
in synchrony when we allowed the demographic param-
eters to vary among patches (Abbott 2006). Indeed, Lieb-
hold et al. (2006) also noted that nonlinear models did
not always behave analogously to the linear model that
was the focus of their study. We therefore believe that our
simulation results will hold under more complicated as-
sumptions about how demographic processes vary among
populations.

Different types of environmental stochasticity can have
different effects on the spatial pattern of synchrony among
populations (Abbott 2007). In our simulations, we used
a multivariate lognormal model for environmental sto-
chasticity in which covariance declined exponentially with
distance. This is reasonable for at least some weather var-
iables (Koenig 2002), but it is certainly not the only pos-
sible model. There is evidence that gypsy moth dynamics
are affected by temperature and precipitation (Williams
and Liebhold 1995a, 1995b), by the timing of egg hatching
relative to tree budburst (Hunter and Elkinton 2000), and
by the number of extremely cold winter days (Waggoner
1985), so we do have some knowledge of how gypsy moth
populations are affected by weather. Determining the pre-
cise contribution of weather to gypsy moth synchrony,
however, would require detailed information on how these
and probably other factors interact, how they are corre-
lated through space, and precisely how they alter popu-
lation dynamics. In the absence of such information, we
have used a simple and commonly employed model of
correlated weather in our simulations. Because we were
forced to estimate the parameters of this weather model
by fitting our demographic model to the synchrony data,
we cannot use our simulation results to definitively infer
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that correlated weather is largely responsible for synchrony
in nature. The simplest alternative explanation is that
gypsy moth synchrony is caused by high rates of human-
induced egg dispersal, but this scenario appears to be un-
realistic (Fujita 2007). Meanwhile, the level of correlation
that we used in our model falls within the range of values
seen in various types of weather data (table 1), suggesting
that our results are robust. Moreover, in a comparative
analysis of data on six forest insects (including the gypsy
moth), Peltonen et al. (2002) also concluded that corre-
lated weather and not dispersal was likely the proximate
cause of synchrony. For these reasons, we suspect that
correlated environmental stochasticity is indeed an im-
portant contributor to gypsy moth synchrony in nature
as it is in our model, but we cannot state this with certainty.
Our main contribution, therefore, is not to elucidate how
the details of correlated weather may contribute to gypsy
moth synchrony but to demonstrate that, to achieve syn-
chrony among chaotic populations with low levels of dis-
persal, we need not impose extraordinarily high degrees
of correlation in the stochastic environment.

Although human-induced dispersal is likely an impor-
tant factor in the rapid spread of the gypsy moth invasion
(Liebhold et al. 1992), our study suggests that long-
distance egg dispersal caused by humans is not driving
gypsy moth synchrony. Instead, synchrony in our model
appears to be due to correlations in the environment acting
on complex multispecies population dynamics. Although
we have used the gypsy moth as an example, the assump-
tions of our model are appropriate for many outbreaking
forest insects (Dwyer et al. 2004). Consequently, our results
more generally suggest that synchrony among other out-
breaking forest insect populations might likewise arise be-
cause of correlated stochasticity and the route to chaos.
More broadly, the contrast between our results and those
on synchrony in single-species models emphasizes the im-
portant role of mechanistic models in examining the
causes underlying complex population dynamics.
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