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abstract: Host-pathogen models usually explain the coexistence

of pathogen strains by invoking population structure, meaning host

or pathogen variation across space or individuals; most models,

however, neglect the seasonal variation typical of host-pathogen in-

teractions in nature. To determine the extent to which seasonality

can drive pathogen coexistence, we constructed a model in which

seasonal host reproduction fuels annual epidemics, which are in turn

followed by interepidemic periods with no transmission, a pattern seen

in many host-pathogen interactions in nature. In our model, a patho-

gen strain with low infectiousness and high interepidemic survival can

coexist with a strain with high infectiousness and low interepidemic

survival: seasonality thus permits coexistence. This seemingly simple

type of coexistence can be achieved through two very different patho-

gen strategies, but understanding these strategies requires novel math-

ematical analyses. Standard analyses show that coexistence can occur if

the competing strains differ in terms of R0, the number of new infec-

tions per infectious life span in a completely susceptible population.

A novel mathematical method of analyzing transient dynamics, how-

ever, allows us to show that coexistence can also occur if one strain

has a lower R0 than its competitor but a higher initial fitness l0, the

number of new infections per unit time in a completely susceptible

population. This second strategy allows coexisting pathogens to have

quite similar phenotypes, whereas coexistence that depends on differ-

ences inR0 values requires that coexisting pathogens have very differ-

ent phenotypes. Our novel analytic method suggests that transient

dynamics are an overlooked force in host-pathogen interactions.

Keywords: heritability, trade-offs, host-pathogen system, complex

dynamics, eco-evolutionary.

Introduction

Mathematical theories of pathogen competition have
achieved important successes in understanding pathogen
virulence, notably by showing that trade-offs between
pathogen fitness components can lead to natural selection
for intermediate virulence (Anderson andMay 1982). Ob-
servations of trade-offs and virulence evolution have pro-

vided empirical support for trade-off theory (Alizon et al.
2009; Leggett et al. 2013; Alizon andMichalakis 2015), but
simple trade-off models cannot explain the coexistence of
competing pathogen strains (Keeling and Rohani 2008).
Pathogen coexistence has nevertheless been widely observed
in the field (Hellard et al. 2015; Betts et al. 2016; Fountain-
Jones et al. 2018), confirming that simple trade-off theory
is not sufficient to describe pathogen coexistence in nature.
More complex models have explained pathogen coex-

istence using a range of mechanisms, including pathogen
specialization on particular host genotypes (Lively and
Dybdahl 2000), spatial aggregation of pathogen strains
(Messinger and Ostling 2009), host density-dependent
mortality (Andreasen and Pugliese 1995), and a balance
between within-host and between-host competitive abil-
ity (Levin and Pimentel 1981; Clay et al. 2019). A com-
mon feature of these disparate models is variation in host
or pathogen densities across space or individuals and thus
population structure broadly defined (Briggs et al. 2010;
Lion et al. 2011). The theoretical literature therefore sug-
gests a loose consensus that pathogen coexistence is best
explained by population structure in the host, the patho-
gen, or both.
Here, we propose that pathogen coexistence may alter-

natively be explained by variation across time, in the form
of seasonality in host reproduction and pathogen trans-
mission. Standard host-pathogenmodels assume that host
reproduction and pathogen transmission are nonseasonal,
an assumption that reflects the origin of the models as
models of infectious diseases of humans (Keeling and Ro-
hani 2008). In infectious diseases of animals and plants, in
contrast, seasonality in host reproduction and pathogen
transmission is the rule rather than the exception (Altizer
et al. 2006; van den Berg et al. 2010; Filion et al. 2020; Poulin
2020).
Recognition of the ubiquity of seasonality has led to

the increasing use of seasonal models in disease ecology
(Altizer et al. 2006; Mordecai et al. 2016). Models of the
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effects of seasonality on pathogen coexistence, however,
have to our knowledge considered only the particular case
in which coexistence can result from evolutionary branch-
ing, in which a single pathogen strain gives rise to two
strains through a series of small phenotypic changes (van
den Berg et al. 2010; Hamelin et al. 2011). This approach
usefully describes how mutational dynamics can lead to co-
existence, but it cannot easily be used to understand the
ecological mechanisms by which seasonality allows for
pathogen coexistence and thus cannot easily explain how
and why pathogens coexist in seasonal environments.
Here, we therefore instead consider pathogen coexis-

tence from an ecological perspective.We construct amodel
of pathogen competition in a seasonal environment, and
we analyze the model to understand the conditions under
which seasonality leads to the coexistence of pathogen
strains. Using a novel mathematical tool, we derive simple
criteria that quantify the range of pathogen phenotypes over
which pathogen coexistence can occur. Because coexistence
is much more likely if a low-infectiousness/high-survival
pathogen strain can cause a high number of infections in
the early stages of an epidemic, our work shows that the
transient dynamics of epidemics play a key role in patho-
gen coexistence in seasonal environments. Because our
model’s structure provides a good approximation to the
ecology of pathogens of taxonomically diverse host species,
including pathogens of plants, invertebrates, and verte-
brates, our research illustrates a general approach to under-
standing the role of seasonality in pathogen coexistence.We
conclude that seasonality provides an important alternative
to population structure as an explanation for pathogen
coexistence.

Model Construction

Overview

Models of seasonality in host-pathogen interactions have
historically followed an approach from human epidemi-
ology in which host reproduction or pathogen transmis-
sion is assumed to vary sinusoidally (Altizer et al. 2006;
Buonomo et al. 2018). In nature, in contrast, animal and
plant reproduction and pathogen transmission usually occur
during separate periods, such that a flush of susceptible
hosts due to host reproduction leads to an annual pathogen
epidemic, which is in turn followed by a long period during
which neither host reproduction nor pathogen transmis-
sion occurs.
This pattern is most obvious in insect pathogens, in

which host reproductive periods are often short (Hunter
1995) and host larvae are often the only susceptible stage
(Cory and Myers 2003), and in plant pathogens, in which
infection can often occur only in the aboveground tissue
that is produced near the beginning of the growing season

(van den Berg et al. 2010; Penczykowski et al. 2015; Suffert
et al. 2015; Honjo et al. 2020). In vertebrates, in contrast,
there is usually no intrinsically immune age class, but ver-
tebrate hosts often either die or become immune during
the annual epidemic, and the next epidemic does not begin
until new susceptible hosts are produced during the breed-
ing season. This pattern qualitatively matches the seasonal
pattern seen in insects and plants and has been observed
in fish (Prati et al. 2020), frogs (Valencia-Aguilar et al.
2016; Mihaljevic et al. 2018; McDevitt-Galles et al. 2020),
birds (Hosseini et al. 2004; Van Dijk et al. 2014; Lisovski
et al. 2017; Martens et al. 2020), small mammals (Begon
et al. 2009; Pathak et al. 2011; Langwig et al. 2015), large
mammals (Havarua et al. 2014; Beaunée et al. 2015; Treanor
et al. 2015; Albery et al. 2018; Scherer et al. 2019), and even
sub-Saharan human populations afflicted by measles (Doré-
lien et al. 2013).
In our model, we therefore assume that there is an an-

nual pathogen epidemic that is fueled by new susceptible
hosts produced during a discrete bout of host reproduction.
The pathogen is then able to survive the interepidemic pe-
riod because hosts infected in one epidemic can infect at
least a few hosts at the beginning of the following epidemic.
Pathogen survival across the interepidemic period may be
due either to the persistence of infectious particles in the
environment, as occurs in insect pathogens (Murray and
Elkinton 1989; Hajek 1999), plant pathogens (Penczy-
kowski et al. 2015), and vertebrate pathogens like avian
flu (Rohani et al. 2009), or to asymptomatic hosts that act
as carriers that infect susceptible young after the breeding
period, as occurs in many different vertebrate pathogens
(Becker et al. 2020).
To describe the annual epidemic, we use a SIR-type

model from human disease epidemiology (Keeling and
Rohani 2008). Following a structure pioneered by Gillespie
(1975) andMay (1985), we allow for seasonality by embed-
ding the SIR model in a set of difference equations that
allow host reproduction to occur in the period between
epidemics when the pathogen must survive in the absence
of transmission. In previous work with colleagues, we ar-
gued that population structure can play a key role in path-
ogen coexistence in seasonal environments (Fleming-Davies
et al. 2015); to focus on the role of seasonality alone, how-
ever, here we assume that there are no effects of population
structure. To similarly avoid the complication of fluctuat-
ing population sizes, we assume that the density of the host
is determined by factors other than the pathogen, so that
the host population density is the same at the beginning
of each epidemic. The same models that we previously
used to show that population structure can allow for path-
ogen coexistence in seasonal environments also suggested
that fluctuating population densities make coexistence
more likely (Fleming-Davies et al. 2015), suggesting in
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turn that our results hold as well for the case of fluctuating
population sizes.

Model Equations

Epidemic Submodel. Our SIR-type model tracks the frac-
tion of hosts that are susceptible S, the fraction of hosts
that are infected I, and the fraction of hosts that are dead
or recovered and immune R; to allow for competition be-
tween pathogen strains, we further divide the infected
class into hosts infected with a resident strain Ir and hosts
infected with an invader strain Ii. For purposes of com-
parison, we begin with a version of this model that neglects
seasonality (Anderson and May 1982):

dS

dt
p a(S1 Ir 1 I i 1 R)2 brSIr 2 biSI i 2 dS, ð1Þ

dIr

dt
p brSIr 2 mrIr 2 dIr , ð2Þ

dI i

dt
p biSI i 2 miI i 2 dI i, ð3Þ

dR

dt
p mrIr 1 miI i 2 dR: ð4Þ

Here, a is the host reproductive rate; d is the nondisease
death rate; br and bi are the instantaneous transmission
rates of the resident and invader strains of the pathogen,
respectively; and mr and mi are the removal rates of the res-
ident and the invader. Immune hosts cannot be infected
by either pathogen strain, but again R can stand for either
dead or immune hosts. This model was originally used to
describe host-pathogen interactions with fluctuating pop-
ulation sizes (Andreasen and Pugliese 1995); because here
we instead assume constant population sizes, in practice
we assume a ≡ d.
For this model, a key quantity is the reproductive number

R0,k p bk=mk, the number of new infections per old infec-
tion in a completely susceptible population, where k p r
for the resident and k p i for the invader (throughout, we
use k to indicate cases that apply to both the invader and
the resident). Because R0,k is the reproductive number when
the fraction susceptible S(t) p 1 and because 1=mk is the av-
erage lifetime of an infection, R0,k represents the number of
new infections over the pathogen’s infectious period and is
thus the net number of new infections per infectious life
span.
To explain the importance of R0,k, we note that if we

set I i(t) p 0, then by setting equation (2) to zero we
can show that the equilibrium fraction susceptible is
S* p mr=br p 1=R0,r . At this resident-only equilibrium,
invasion can occur if dI i=dt 1 0 , so invasion is possible
if S* 1 1=R0,i. Substituting S* p 1=R0,r and rearranging

gives a criterion that determines when invasion can occur:
R0,i 1 R0,r . In this classical theory, an invasion can thus oc-
cur if the invader can maintain the susceptible host pop-
ulation at a lower equilibrium value than the resident; in
seasonal environments, in contrast, whether an invasion
can occur depends not just on the equilibrium value of
the resident but also on the transient dynamics of the in-
vader during epidemics, as we will show.
If R0,i 1 R0,r, then the invader in equations (1)–(4) will

drive the resident extinct (Bremermann and Thieme
1989), implying that the strain with the largestR0,kwill com-
petitively exclude all other strains. To avoid the unrealistic
situation in which natural selection drives transmission
bk → ∞ and removal mk → 0, the standard approach is to
constrain R0,k by invoking a trade-off such that increases
in the transmission rate bkwill be accompanied by increases
in the removal rate mk (Anderson and May 1982; Acevedo
et al. 2019). If the increase in mk accelerates as bk increases,
natural selection will favor intermediate values of bk and
thus intermediate virulence (Keeling and Rohani 2008). Be-
cause pathogen strains with the optimal value of R0,k will
outcompete all other strains, in thismodel strains can coex-
ist only if they have the same value of R0,k. Pathogen coex-
istence in a broad sense is therefore impossible in this
model, as it often is in simple host-pathogenmodels (Keel-
ing and Rohani 2008).
Equations (1)–(4) belong to a broad class of models that

were originally constructed by adding host reproduction
and nondisease death to the SIR model of Kermack and
McKendrick (1927). To construct a seasonal model, we
instead eliminate the host reproduction term a(S1 I i 1
Ir 1 R) and the death terms dS, dIi, dIr, and dR from
equations (1)–(4), thereby returning to the original
Kermack-McKendrick model. We then embed the
Kermack-McKendrick model in a set of difference equa-
tions that describe host reproduction and pathogen sur-
vival during the interepidemic period. Because the total
fraction infected in our model is determined by the cumu-
lative fraction infected with each pathogen strain, we re-
place the single removed class R in equation (4) with
two removed classes Zr and Zi, representing the resident
and the invader, respectively. Our epidemic model is then

dS

dt
p 2brSIr 2 biSI i, ð5Þ

dIr

dt
p brSIr 2 mrIr , ð6Þ

dI i

dt
p biSI i 2 miI i, ð7Þ

dZr

dt
p mrIr , ð8Þ
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dZi

dt
p miI i: ð9Þ

Note that here and throughout we allow for two pathogen
strains. Results from two-strain models cannot always be
generalized to the case of multiple strains (Dieckmann
2002), but two-strain models nevertheless serve as a useful
starting point (Alizon and Michalakis 2015).
When only the resident is present and the initial fraction

infected with the resident is low, the density of the host at
first changes very slowly, so that S(0) is roughly constant.
Under these conditions it is straightforward to solve equa-
tion (6) for the fraction infected with the resident at the be-
ginning of the epidemic: Ir(t) ≈ Ir(0) exp(brS(0)2 mr). An
analogous equation holds when only the invader is present.
Because at the beginning of an epidemic S(0) ≈ 1, we can
define the instantaneous relative fitness of the invader at
the beginning of an epidemic as g0 ≡ l0,i=l0,r ≡ (bi 2

mi)=(br 2 mr), where l0,r and l0,i are the initial absolute
fitnesses of the resident and the invader, respectively (note
that l0,k is sometimes referred to as “epidemic speed”
[Dushoff and Park 2021] or the “epidemic growth rate”
[Parag et al. 2021], symbolized as rk; to avoid confusionwith
r for the resident, here we instead use l). We use the sub-
script 0 to indicate that as in the definitions of R0,r and
R0,i, the definitions of g0, l0,r, and l0,i hold only if S ≈ 1,
which is true only if t ≈ 0.
Like the reproduction number R0,i, the initial epidemic

fitness l0,k is calculated when the fraction susceptible
S(t) ≈ 1, so l0,k p bk 2 mk is the difference between the
number of new infections per unit time per infectious

host minus the number of removals per unit time per in-
fectious host and is thus the net number of new infec-
tions per unit time. As we will show, l0,r and l0,i are as
important for understanding coexistence in seasonal envi-
ronments as R0,r and R0,i.
It is convenient to rescale time according to t̂ ≡ mrt, so

that time is measured in units of the average infectious life
span of the resident strain r. It is also convenient to define
the ratio of removal rates u ≡ mi=mr and to replace bk and mk

for each pathogen strain with the reproductive numbers
R0,k ≡ bk=mk. If we then drop the hat from t̂, we have a
rescaled version of our epidemic model:

dS

dt
p 2R0,rSIr 2 uR0,iSI i, ð10Þ

dIr

dt
p R0,rSIr 2 Ir , ð11Þ

dI i

dt
p uR0,iSI i 2 uI i, ð12Þ

dZr

dt
p Ir , ð13Þ

dZi

dt
p uI i: ð14Þ

A key feature of single-epidemic SIR models is that
eventually the fraction infected approaches zero, a phe-
nomenon known as “epidemic burnout.” Importantly,
at epidemic burnout the fraction susceptible is often well
above zero (Thieme 2003), as figure 1 illustrates. To
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Figure 1: Dynamics of the single-strain SIR model, equations (10) and (11). Note that the final fraction susceptible is greater than zero at
the end of the epidemic and thus at burnout. Here, the pathogen reproductive number R0,r p 2:3.
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understand this effect, Kermack and McKendrick (1927)
derived an implicit expression for the cumulative frac-
tion infected at burnout Zr(∞):

12 Zr(∞) p exp(2R0,r(S(0)Zr(∞)1 Ir(0))): ð15Þ

As our notation implies, the burnout equation assumes
that time t → ∞, but as figure 1 illustrates Zr(∞) can
be quite close to its burnout value even if time t is not
that large. Indeed, as we document in the discussion sec-
tion, literature data suggest that epidemics of many ani-
mal and plant pathogens approach burnout every year.
In addition to providing a realistic summary of animal

and plant epidemics in nature (Fuller et al. 2012), the
burnout equation is useful because its analytical tracta-
bility and computational convenience allow for a deeper
conceptual understanding of epidemics than can be pro-
vided by simulations alone. The equation’s analytical
tractability makes it possible to show, for example, that
when the initial infection rate Ir(0) ≈ 0, the equation has
a nonzero solution Zr(∞) only if S(0) 1 1=R0,r, so an epi-
demic can occur only if the fraction susceptible is above
the threshold value of 1=R0,r . This is a version of the well-
known threshold theorem of epidemiology (Kermack and
McKendrick 1927).
The burnout equation’s computational convenience is

important because we can use the equation to calculate
the fraction infected Zr(∞) using a numerical root-finding
routine, for example, the function uniroot() in the R pro-
gramming language. It is also possible to approximate
Zr(∞) by numerically integrating the full model equa-

tions (10) and (11)—for example, by using the function
ode() in R—but numerical root-finding routines require
fewer lines of code and less run time. Moreover, the time
that it takes for a model epidemic to approach burnout
changes as the model parameters change, so using a differ-
ential equation solver to calculateZr(∞) requires either that
we reset our choice of time interval for each parameter set
or that we numerically integrate the model over a time in-
terval that is long enough to assure that burnout occurs for
essentially all parameter values. Changes in parameter val-
ues are, in contrast, a nonissue when we solve the burnout
equation using a root-finding algorithm, and this compu-
tational tractability again allows for a deeper conceptual
understanding of epidemics.
To illustrate how the computational convenience of the

burnout equation improves our conceptual understanding,
in figure 2 we use a numerical root-finding routine to plot
the cumulative fraction infected at burnout Zr(∞) versus
both the initial fraction infected S(0) and the reproductive
number R0,r. As the figure makes clear and as visual inspec-
tion of the burnout equation confirms, changes in S(0) and
R0,r have identical effects onZr(∞). The figure also illustrates
the threshold effect, in that Zr(∞) increases very sharply
with S(0) for S(0) 1 1=Rr,0; for S(0) ! 1=Rr,0, in contrast,
Zr(∞) is near zero unless Ir(0) 1 1023. For values of S(0)
above the threshold, however, increases in Ir(0) have very
little effect on Zr(∞).
Although an analogous burnout equation cannot be de-

rived for the two-strainmodel equations (10)–(14), the burn-
out equation for the single-strain model is still fundamental
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Figure 2: Effects of the reproductive number R0 and the initial fractions susceptible S0 and infected I0 on the fraction infected at burnout.
Here, we plot the cumulative fraction infected Zr(∞), as calculated using the burnout equation (15), against the initial fraction susceptible S(0)
(upper horizontal axis) and the reproductive number R0,r (lower horizontal axis), for three different values of the initial fraction infected Ir(0).
The equivalence of the horizontal axes makes clear that changes in S(0) and R0,r have equivalent effects on the cumulative fraction infected,
while the low infection rates below the threshold of 1=R0,r p 0:25 demonstrate the importance of the threshold.
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to our analyses. This is because an understanding of co-
existence requires the use of invasion analysis, which as-
sumes that the resident is at equilibrium before the in-
vasion: we can therefore use the burnout equation to
describe the resident’s cumulative infection rate at the
preinvasion equilibrium.Moreover, one of our key results
is that we have derived a highly accurate approximation
to the full two-pathogen model at the beginning of an in-
vasion, and this approximation is nearly as analytically
tractable and computationally convenient as the burnout
equation. The burnout equation thus illustrates the ana-
lytic tractability and computational convenience that we
strive for in our analyses.

Interepidemic Model. Because we assume that the host’s
population density is constant, we do not need an explicit
term for host reproduction. To complete our model, we
therefore need allow only for the interepidemic survival
of each pathogen strain, which is equivalent to allowing
for interepidemic transmission. Using n to indicate the host
generation, our interepidemic model is then

Sn11(0) p 12 In11
r (0)2 In11

i (0), ð16Þ

In11
r (0) p WrZ

n
r (∞), ð17Þ

In11
i (0) p W iZ

n
i (∞): ð18Þ

Here, Sn11(0) is the initial fraction susceptible during the ep-
idemic in generation n1 1, which is equal to 1 minus the
initial fraction infected with each pathogen strain, In11

r (0)
and In11

i (0). The initial fraction infectedwith each pathogen
strain is in turn proportional to the cumulative fraction in-
fected by that strain in the previous generation; because the
cumulative fractions infected are calculated at epidemic
burnout, they are symbolized by Zn

r (∞) and Zn
i (∞), respec-

tively. Note that at the beginning of each epidemic the cu-
mulative fraction infected is by definition zero in both
strains: Zn

r (0) p Zn
i (0) p 0. We also assume that infec-

tions in one epidemic can affect only the following epi-
demic, so that there are no multiyear effects.
The parametersWr andWi are the effective interepidemic

survival rates for the two strains. Here, “effective” means
that Wr and Wi allow for the possibility of higher or lower
levels of susceptibility at the beginning of the epidemic rel-
ative to later in the epidemic. In the interaction between the
spongy moth (Lymantria dispar, formerly known as the
“gypsy moth”) and its baculovirus as well as in some other
interactions between insects and their baculoviruses, larvae
are far smaller and thusmore susceptible at the beginning of
the epidemic than they are later in the epidemic, an effect
that more than compensates for interepidemic pathogen
mortality: Wr and Wi are therefore greater than 1 in such
systems (Fleming-Davies and Dwyer 2015). In our analyses,

we instead assume that Wr ,W i ≪ 1 on the grounds that
interepidemic survival is likely to be low in most host-
pathogen systems, butwe knowof no reasonwhy our results
would not hold ifWr ,W i 1 1.

Model Analyses: Overview

A useful approach to understanding pathogen coexis-
tence is to first understand pathogen invasions, in which a
pathogen strain invades a host population that is already oc-
cupied by another pathogen strain that has reached a stable
equilibrium. If an invasion can occur at this single-strain
equilibrium and if each strain can invade the other, then co-
existence is effectively guaranteed. We can apply invasion
analysis to our model because the single-strain version of
themodel has an equilibrium that is stable as long as the res-
ident pathogen’s reproductive number R0,r p br=mr 1 1, a
standard criterion in host-pathogen models (Keeling and
Rohani 2008), and as long as the resident pathogen’s inter-
epidemic survival rate Wr ! 1 (supplemental PDF), a bio-
logically reasonable assumption. We therefore use invasion
analysis to ask: Is coexistence possible at the single-strain
equilibrium in our model?
The short answer is yes; in our model, a strain with high

infectiousness during epidemics and low survival between
epidemics can coexist with a strain with low infectiousness
during epidemics and high survival between epidemics.
The longer answer is that coexistence in our model would
superficially appear to require large differences in phenotype
between coexisting strains, and an initial analysis confirms
that such large differences can indeed lead to coexistence:
an invading strain with sufficiently high reproductive num-
ber R0,i can coexist with a resident strain if the invader’s in-
terepidemic survival rate Wi is sufficiently low. This initial
analysis, however, follows classical analyses in considering
only whether the invading pathogen can cause an epidemic
when the epidemic of the resident strain has already reached
its burnout equilibrium. We therefore refer to this type of
invasion as an “epidemic-equilibrium invasion.”
This focus on equilibrium behavior is an important lim-

itation because an invasion can alternatively occur at the be-
ginning of an epidemic, well before the resident strain’s in-
fection rate has reached its burnout equilibrium. Showing
that such “epidemic-transient” invasions can occur required
that we carry out a second, novel analysis that describes the
dynamics of invasions during a transient window near the
beginning of the resident’s epidemic. This novel analysis
shows that an invader with lower reproductive number
R0,i than the resident can invade if its initial epidemic fitness
l0,r is larger than the epidemic fitness l0,i of the resident.
Such a pathogen can successfully invade because its rela-
tively high l0,i allows it to infect at least a few hosts early
in the epidemic, before the fraction infected by the resident
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has reached high levels. In this case, the invader must again
have a higher interepidemic survival rate Wi than the res-
ident, but the compensating effects of the invader’s higher
initial fitness l0,i are strong enough that coexistence can oc-
cur even if the invader’s phenotype is quite similar to the
resident’s phenotype. Epidemic-equilibrium and epidemic-
transient invasions together allow pathogens to coexist over
a wide range of parameters, and we therefore conclude that
coexistence is likely in seasonal environments.
Because the two types of invasion occur under different

circumstances, we discuss them separately. Understanding
epidemic-transient invasions in particular requires an ex-
tensive rethinking of pathogen competition, which is why
a novel type of analysis is required. In explaining our anal-
yses, we therefore focus on the case of epidemic-transient
invasions.

Epidemic-Equilibrium Invasions

As we explained earlier, when only one pathogen strain
is present the fraction infected during the epidemic stops
changing at epidemic burnout, which is an equilibrium
of the epidemic model equations (1)–(4). An invasion
can then occur if the product of the reproductive num-
ber of the invading strain R0,i and the resident’s fraction
susceptible at burnout S*(∞) is greater than 1 (Newman
2005; Andreasen and Sasaki 2006):

S*(∞)R0,i 1 1: ð19Þ

Here, the asterisk refers to the single-strain equilibrium of
the season-to-season model, while the infinity symbol em-
phasizes that S*(∞) is calculated at burnout: S*(∞) is thus
the fraction susceptible at burnout when the resident is at
its preinvasion equilibrium. Because the resident’s epidemic
has reached burnout, S*(∞) p S*(0)(12 Z*

r (∞)), where
S*(0) is the fraction susceptible at the beginning of the ep-
idemic and Z*

r (∞) is the cumulative fraction infected at
burnout, where both are calculated at the single-strain equi-
librium. Epidemic-equilibrium invasions thus occur at ep-
idemic burnout when the resident is at its multigenera-
tional equilibrium.
Figure 2 shows that a single-strain epidemic can occur

even if the pathogen’s initial infection rate is extremely
low, but it does not show that an epidemic that begins with
a lower fraction infected takes longer to reach burnout than
does an epidemic that begins with a higher fraction in-
fected. This phenomenon is important for coexistence be-
cause if a high-infectiousness invader has a low interepi-
demic survival rate, then in each year after the invasion
there will be a delay before the invader’s infection rate
reaches a high level. If this delay is long enough, the resident
can have at least a modest epidemic before it is out-
competed by the invader. Figure 3 confirms that such a sce-

nario can indeed lead to coexistence. Mutual invasion oc-
curs because the reverse is also true; if the strain with high
infectiousness and low interepidemic survival is instead the
resident, then the delay in the resident’s epidemic will allow
an invader with low infectiousness and high survival to suc-
cessfully invade (see the supplemental PDF for a figure
showing this reverse case).
A simple explanation for this coexistence mechanism is

that at the start of each epidemic, seasonality resets the frac-
tion infected with each strain. In the epidemic that follows
an invading strain with relatively low infectiousness but
high interepidemic survival will be pushed toward extinc-
tion, but at the beginning of the next epidemic it will be re-
stored to a relatively high frequency. If the invading strain
instead has relatively high infectiousness but low interepi-
demic survival, then the resident will be pushed toward ex-
tinction during each epidemic, again before being restored
to a relatively high frequency at the beginning of the next
epidemic. Seasonality therefore allows for coexistence in
our model because it alternately favors high-infectiousness
strains and high-survival strains.
Epidemic-equilibrium invasions can thus allow for coex-

istence as long as the interepidemic survival rate of themore
infectious strain is sufficiently small (fig. 3); indeed, the in-
terepidemic survival rate of the more infectious strain can
be vanishingly low as long it is not zero. Coexistence can
in contrast be prevented if the interepidemic survival rate
of the more infectious strain is relatively high. There is thus
an upper limit on the survival rate of the more infectious
strain above which coexistence is impossible, but there is
no lower limit other than zero.
Because coexistence through epidemic-equilibrium in-

vasions requires that the more infectious strain be able to
cause an epidemic even though the less infectious strain
has reached epidemic burnout, the reproductive numbers
of the competing strains must in general be very different
for an epidemic-equilibrium invasion to lead to coexistence.
Coexistence through epidemic-equilibrium invasions thus
requires that the competing strains have very different phe-
notypes; as we will show, however, coexistence through ep-
idemic transients allows the two pathogen strains to have
quite similar phenotypes.

Epidemic-Transient Invasions

Although the epidemic-equilibrium invasion criterion al-
lows for the inherently transient nature of seasonal envi-
ronments, the assumption that the resident’s epidemic has
reached its burnout equilibrium means that our analysis
of the epidemic-equilibrium case is conceptually similar to
the analysis used to derive the classical criterion R0,i 1 R0,r, as
we mentioned. As figure 3 illustrates, however, an epidemic-
equilibrium invasion can be successful even if the resident’s
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epidemic has not yet reached burnout; indeed, such an in-
vasion is evenmore likely to be successful than the epidemic-
equilibrium invasion criterion indicates. This observation
suggests that the transient dynamics of epidemics may also
affect invasions. Our next step is therefore to consider how
transient dynamics maymodulate invasions and thus path-
ogen coexistence.
In figure 4, we show an epidemic-transient invasion in

which an invader with low infectiousness and high interep-
idemic survival successfully invades and coexists with a res-
ident strain with high infectiousness and low interepidemic
survival. As the figure shows, this invasion occurs even
though the resident’s epidemic terminates the invader’s
epidemic in each generation; crucially, however, such termi-
nations do not occur until the fraction infected by the in-
vader has reached a high level. The delay between the begin-
ning of the resident’s epidemic and the termination of the
invader’s epidemic therefore provides a window of oppor-
tunity duringwhich the invader can invade. If the resident’s
interepidemic survival rate is sufficiently low relative to the
invader’s interepidemic survival rate, the delay between the

beginning of the resident’s epidemic and the termination
of the invader’s epidemic will be large enough to ensure
the success of the invasion.
Notably, the two pathogen strains in the epidemic-

transient invasion shown in figure 4 have much more
similar phenotypes than the two pathogen strains in the
epidemic-equilibrium invasion shown in figure 3. Because
in the epidemic-equilibrium case the reproductive num-
ber of the invader must be so much higher than the re-
productive number of the resident, the invader rapidly
terminates the epidemic of the resident in each generation,
leading to rapid invasion and rapid convergence to the co-
existence equilibrium. In the epidemic-transient case, in
contrast, the invader and the resident have nearly equal
competitive ability during the epidemic, so convergence to
the coexistence equilibrium is quite slow.
It is important to emphasize that when we switch the

parameters for the resident and the invader in figures 3 and
4, invasion and coexistence are still possible (supplemen-
tal PDF). This is because in both cases coexistence results
from a trade-off between intraepidemic infectiousness
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Figure 3: Simulation showing coexistence resulting from an epidemic-equilibrium invasion. At the beginning of the simulation, the
resident’s initial infection rate is equal to its single-strain equilibrium, while the invader’s initial infection rate is 1028. The upper plot shows
the cumulative infection rate of each pathogen at the end of the epidemic in each host generation, while the three lower plots show the
epidemic dynamics in the three generations that are marked with solid circles in the upper plot. The infection rate of each pathogen changes
during each epidemic, but once the coexistence equilibrium is reached the epidemic dynamics are the same in each generation. Here, the
resident has transmission rate br p 1:25, removal rate mr p 1, and interepidemic survival Wr p 1023, while the invader has transmission
rate bi p 1:8, removal rate mr p 1, and interepidemic survival W r p 1029. We therefore have R0,r p 1:25=1 ! 1:8=1 p R0,i, so the invader
has a higher reproductive number than the resident. Coexistence is thus possible because the invader’s interepidemic survival rate is six orders
of magnitude lower than the interepidemic survival rate of the resident.
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and interepidemic survival; in both cases a strain with low
infectiousness and high survival therefore has an advan-
tage early in the epidemic, while a strain with high infec-
tiousness and low survival has an advantage late in the ep-
idemic. In both cases coexistence thus occurs because the
strain with low infectiousness but high interepidemic sur-
vival can cause infections early in the epidemic.
It is nevertheless true that epidemic-equilibrium invasions

and epidemic-transient invasions occur for very different
ranges of the model parameter values, implying that the
two different types of invasion represent quantitatively dif-
ferent pathogen strategies. Because themodel output for the
two cases is qualitatively similar, however, and in particular
because the time it takes to reach equilibrium provides only
a rough indication of which case iswhich, simulations alone
are insufficient for understanding the difference between
the two cases. Understanding the difference thus instead re-
quired that we derive an analytic expression showing when
epidemic-transient invasions are possible, analogous to the
expression that we derived for epidemic-equilibrium inva-
sions.Moreover, the epidemic-transient case is conceptually
different from the epidemic-equilibriumcase, so the equilib-

rium approach that we used in the epidemic-equilibrium
case is insufficient for understanding the epidemic-transient
case. To understand the epidemic-transient case, we there-
fore instead developed a new mathematical technique for
analyzing pathogen invasions. Here, we use this technique
to understand the conditionsunderwhich epidemic-transient
invasions can occur.

Analyzing Epidemic-Transient Invasions. First, we con-
sider the conditions under which the invader increases
its initial infection rate Ii(0) from one epidemic to the next,
so that the invader is increasing in frequency. Because the
invader’s infection rate at the beginning of an epidemic is
equal to its interepidemic survival Wi times the fraction
infected in the previous epidemic Zi(∞), the invader’s fre-
quency will only increase if

W iZi(∞) 1 I i(0): ð20Þ

To use the above-described criterion to understand
how transient epidemic dynamics allow for invasions, we
must express the cumulative fraction infected by the in-
vader Zi(∞) in terms of the model parameters. To do this,
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Figure 4: Simulation showing coexistence resulting from an epidemic-transient invasion. As in figure 3, the upper plot shows the cumu-
lative infection rate of each pathogen at the end of the epidemic in each host generation, while the three lower plots show the epidemic
dynamics in the generations that are marked with circles in the upper plot. Here, the resident has transmission rate br p 3:5, removal rate
mr p 1, and interepidemic survival rate W r p 1:1#1026, while the invader has transmission rate bi p 4, removal rate mi p 1:3, and in-
terepidemic survival W i p 4:05#1027. In contrast to figure 3, the two pathogens thus have similar interepidemic survival rates, but the
resident has a higher reproductive number than the invader, such that R0,r p 3:5=1 p 3:5 1 3:08 ≈ 4=1:3 p R0,i, while the invader has a
higher initial epidemic fitness than the resident, such that l0,i p 42 1:3 p 2:7 1 2:5 p 3:52 1 p l0,r . The invader’s higher initial epidemic
fitness thus counterbalances its lower reproductive number, leading to coexistence.
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we recall that the rescaled SIR model equation (14) says
that dZi=dt p uI i(t), where Ii is the instantaneous frac-
tion infected by the invader and u ≡ mi=mr is the ratio of in-
vader mi and resident mr removal rates. Because Zi(0) p 0,
we can integrate both sides of equation (14) to get

Zi(∞) p u

ð
∞

0

I i(t)dt: ð21Þ

Although we cannot solve this integral outright, it is possi-
ble to approximate it in a way that allows us to derive an
epidemic-transient invasion criterion. In the supplemental
PDF, we show that this approximation is highly accurate in
the sense that the output of the approximation is very close
to the output of the full model equations (10)–(14).
To produce the approximation, we use a mathematical

tool known as “multiple timescale analysis” (see the supple-
mental PDF). As its name implies, multiple timescale anal-
ysis allows us to consider the effects of pathogen compe-
tition over two distinct timescales within the epidemic; the
short timescale at the beginning of the epidemic during
which the invader can infect at least a few hosts, and the long
timescale of the entire epidemic over which the invader’s in-
fection rate is driven to zero through competition with the
resident (note that both timescales are much shorter than
the timescale that includes the interepidemic period). By an-
alyzing the epidemic separately over the two timescales, we
can find conditions such that if the resident has a low initial
fraction infected near the beginning of the epidemic, then
the invader’s advantage over the short timescale will out-
weigh its disadvantage over the long timescale.
A complication, however, is that rather than using t as

a variable, our approximation uses the cumulative fraction
infected by both strains x(t) ≡ Zi(t)1 Zr(t) p 12 S(t) as
a variable. The approximation is nevertheless useful be-
cause it allows us to calculate Zi(∞); to do this, we change
the variable of integration in equation (21) from t to x (sup-
plemental PDF). We then have the following approximate
expression for Zi(∞):

Zi(∞) ≈ I i(0)Ir(0)
2g0u

R0,r 2 1

R0,r

� �g0

#

ðx*r (∞)

0

xg0y(x)

(12 x)(R0,rx1 loge(12 x))
dx:

ð22Þ

An additional complication is that the function y(x) is cal-
culated by solving the following differential equation:

y0(x) p

u

x2 1
2 g0f(x)

R0,r 2 11 xf(x)
y, ð23Þ

where we define f(x) ≡ (x1 loge(12 x))=x2.

Despite these complications, our approximate expres-
sion leads to a reasonably simple epidemic-invasion crite-
rion in which invader fitness is expressed in terms of a
short-term component and a long-term component (here
“short term” and “long term” again refer to timescales during
the epidemic). To generate this criterion, we first simplify
our expression for invader fitness by defining the function

Di(R0,r, g0, u) ≡ u
R0,r 2 1

R0,r

� �g0

#

ðx*r (∞)

0

xg0y(x)

(12 x)(R0,rx1 loge(12 x))
dx:

ð24Þ

Here, the upper bound on the integral x*

r (∞) is the frac-
tion of hosts that are still susceptible at burnout when the
resident is at its single-strain equilibrium.
Given this definition, we can rewrite the invader fitness

equation (22) to produce an expression for Zi(∞)=I i(0),
the increase in the invader’s cumulative infection rate rela-
tive to its initial infection rate, in terms of components that
represent invader fitness over short and long timescales:

Zi(∞)

I i(0)
≈ Ir(0)

2g0Di(R0,r, g0, u): ð25Þ

The short-term fitness component is Ir(0)
2g0 , which is

the initial fraction infected with the resident Ir(0) raised
to the power of the invader’s initial relative fitness g0 ≡

l0,i=l0,r . The long-term fitness component is the function
Di(R0,r , g0, u), which represents the dynamical effects on
the invader of competition with the resident.
To understand the relative importance of these two terms

and their associated timescales, in figure 5 we plot the in-
crease in season-to-season invader fitness Zi(∞)=I i(0) on the
same axes as the short-timescale fitness component Ir(0)

2g0

and the long-timescale fitness componentDi(R0,r , g0, u), with
the invader’s initial relative fitness g0 on the horizontal axis.
The figure shows that the short-timescale fitness compo-
nent Ir(0)

2g0 increases very rapidly with increasing g0, as
expected from visual inspection of the component. The
termDi(R0,r, g0, u), in contrast, decreases slowlywith increas-
ing g0. The dominant effects of the short-timescale term
Ir(0)

2g0 thus cause small changes in relative initial invader
fitness g0 to lead to large increases in the invader’s season-
to-season fitness Zi(∞)=I i(0); we therefore conclude that in
an epidemic-transient invasion, the early stages of the epi-
demic largely determine the change in invader fitness. In the
supplemental PDF, we show that the dominance of Ir(0)

2g0

holds for broad ranges of both the resident’s reproduction
number R0,r and the relative removal rate u p mi=mr .
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The strong effects of early epidemic dynamics on invader
fitness are a result of the factors that determine the length of
the delay between the start of the epidemic and the termi-
nation of the invader’s epidemic by the resident. As figure 4
shows, during this delay the invader can infect at least a
modest number of hosts; moreover, the delay is lengthened
by reductions in the resident’s initial infection rate Ir(0).
Reductions in Ir(0) therefore increase invader fitness. The
form of the short-timescale fitness component Ir(0)

2g0

then shows that an increase in initial relative invader fitness
g0 is equivalent to a reduction in Ir(0). Because reductions
in Ir(0) increase the delay between the start of the epidemic and
the termination of the invader’s epidemic by the resident,
small increases in g0 lead to large increases in the invader’s
season-to-season fitness increase Zi(∞)=I i(0) (fig. 5). In-
creases in g0 thus increase the positive effect on the invader
of the delay between the start of the invader’s epidemic and
its termination by the resident’s epidemic.
Understanding why the termDi(R0,r , g0, u) declines with

increasing initial relative invader fitness g0 is more chal-
lenging. Mathematically, the decline occurs because of the
term xg0 inside the integral in equation (24); because x is
the cumulative fraction infected by both pathogens and is
therefore less than 1, xg0 falls rapidly with increasing values
of g0. Because the value of x during an initial invasion is
almost entirely determined by the resident’s epidemic and
because the effects of g0 inDi(R0,r, g0, u) are integrated over
the entire epidemic, the decline in Di(R0,r , g0, u) with in-
creasing g0 represents the increase in the severity of the ef-
fects of competition on the invader that is due to increased

relative invader fitness. Notably, however, these effects are
far smaller than the effects of g0 on the term Ir(0)

2g0 . The
negative effects of increased pathogen competition that re-
sult from increases in g0 are thus trivial compared with the
positive effects of the delay in the resident’s epidemic that
also result from increases in g0.

Why Transient Epidemic Dynamics Make Invasions More
Likely. So far we have described epidemic-transient inva-
sions only in terms of epidemic dynamics, but to fully un-
derstand epidemic-transient invasions we must understand
how epidemic-transient invasions are affected by interep-
idemic dynamics. To do this, we recall that when the
invasion begins the resident’s initial infection rate Ir(0)
is at an equilibrium that is determined by the resident’s
interepidemic survival Wr and reproductive number R0,r.
This observation allows us to connect epidemic and inter-
epidemic dynamics during epidemic-transient invasions, as
follows.
First, recall that inequality (20) shows that for an

epidemic-transient invasion to be successful, the invader’s
interepidemic survival rate Wi times the invader’s season-
to-season fitness Zi(∞) must exceed the invader’s fraction
infected at the beginning of the epidemic Ir(0): rearrang-
ing that inequality gives 1 ! W iZi(∞)=I i(0). We can then
eliminate Zi(∞)=I i(0) from the inequality using our approx-
imate expression from equation (25):

1 ! W iIr(0)
2g0Di(R0,r , g0, u): ð26Þ

0.5 1.0 1.5 2.0

−
1

0
1

2
3

4
5

6
7

Initial relative invader fitness γ0

lo
g

1
0

F
it
n
e
s
s

a
n
d

it
s

c
o
m

p
o
n
e
n
ts

log10 Zi(∞) Ii(0)
log10 Ir(0)−γ0

log10 Di

Figure 5: Effects of increasing initial relative invader fitness g0 on the invader’s season-to-season increase in fitness Zi(∞)=I i(0). To under-
stand the relative importance of the two components of invader fitness, we also plot the initial resident frequency raised to the power of the
initial relative fitness Ir(0)

2g0 and the function that describes the dynamic effects of competition on the invader’s fitness during the epidemic
Di(R0,r , g0, u). Here, the resident’s reproductive number R0,r p 2:5, the relative removal rate u p mi=mr p 0:5, and the resident’s initial in-
fection rate Ir(0) p 1025.
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We can further eliminate Ir(0) by recalling that at the resident-
only equilibrium, I*r (0) p WrZ

*

r (∞). Our epidemic-transient
invasion criterion is then

1 ! W i(WrZ
*
r (∞))

2g0
Di(R0,r , g0, u): ð27Þ

Understanding the conceptual implications of this cri-
terion is easier if we first rewrite the cumulative infec-
tion rate of the resident at the preinvasion equilibrium
as Z*

r (∞) ≡ Er(R0,r ,Wr), so that Er represents the resident’s
cumulative infection rate at the resident-only equilibrium.
After some rearranging, we have

Er(R0,r ,Wr)
l0,i

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

equilibrium infection rate
of resident

Di(R0,r , l0,i=l0,r , u)
l0,r

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamic effect of competition
on invader

!
W

l0,r
i

zffl}|ffl{

interepidemic survival
of invader

W
l0,i
r

|ffl{zffl}

interepidemic survival
of resident

: ð28Þ

Because this criterion depends on the initial epidemic fit-
nesses of the invader l0,i and the resident l0,r as well as on
the interepidemic survival rates of the invader Wi and the
resident Wr, it connects the dynamics of the epidemic
period to the dynamics of the interepidemic period. The
criterion then shows that if W i 1 Wr , it is easier for the
invader to invade, but it also shows that high Wi can be
counterbalanced by high l0,r, while high Wr can be coun-
terbalanced by high l0,i. Likewise, the preinvasion equilib-
rium infection rate of the resident Er(R0,r ,Wr) is higher
if Wr is higher (supplemental PDF), so high Wr makes it
harder for the invader to invade; because Er(R0,r ,Wr) is less
than 1, however, this effect is again counterbalanced by
high l0,i. The equilibrium infection rate Er(R0,r ,Wr) is also
higher if the resident has a high reproductive number R0,r,
but high R0,r can also be counterbalanced by high l0,i. The
criterion thus shows that a high initial epidemic fitness in
the invader can counterbalance a high reproductive number
or a high interepidemic survival rate in the resident.
An important way in which epidemic-transient invasions

differ from epidemic-equilibrium invasions is thus that
epidemic-transient invasions depend on the relative values
of the resident’s reproductive number R0,r and the invader’s
initial epidemic fitness l0,i, whereas epidemic-equilibrium in-
vasions depend on the relative values of the resident and in-
vader reproductive numbersR0,r andR0,i. Epidemic-transient
invasions thus represent a novel mechanism by which path-
ogen invasions can occur.
To better understand the difference between the two types

of invasion, recall that bi and mi are the transmission rate
and removal rate of the invader, respectively, and that the

initial epidemic fitness of the invader is l0,i ≡ bi 2 mi, while
the reproductive number of the invader is R0,i ≡ bi=mi. The
initial epidemic fitness of the invader l0,i thus represents
the net increase in the number of infections per unit time
(assuming bi 1 mi, a necessary condition for an epidemic
to occur), while the reproductive number of the invader
R0,i instead represents the net increase in the number of in-
fections per infectious life span. Proportional increases in
bi and mi, such that bi and mi are multiplied by a number
greater than 1, thus do not increase the invader’s repro-
ductive number R0,i but do increase the invader’s initial ep-
idemic fitness l0,i. Increasing l0,i while keeping R0,i the
same therefore increases the chance of a successful inva-
sion because increases in l0,i cause a more rapid accumu-
lation of infections during the early stages of the epidemic.

Why Epidemic-Transient Invasions Make Coexistence More
Likely. To understand how epidemic-transient invasions
lead to coexistence, we consider the conditions under which
mutual invasions are possible. To do this, we swap the roles
of the resident and the invader by switching their sub-
scripts, so that now i indicates the resident and r indi-
cates the invader. Carrying out this switch in our epidemic-
dynamic invasion inequality (28) produces an invasion
expression for the former resident/current invader.We then
have two epidemic-transient invasion criteria, which we
combine to form a single coexistence criterion;

Er(R0,r ,Wr)
l0,i

Di(R0,r , l0,i=l0,r , mi=mr)
l0,r

!
W

l0,r
i

W
l0,i
r

!
Dr(R0,i, l0,r=l0,i, mr=mi)

l0,i

Ei(R0,i,Wi)
l0,r

:

ð29Þ

Visual inspection of this coexistence criterion provides an
initial understanding of why epidemic-transient invasions
make coexistence likely in seasonal environments. The cri-
terion shows first that if the invader has low initial epidemic
fitness l0,i but high interepidemic survivalWiwhile the res-
ident has high initial epidemic fitness l0,r but low interepi-
demic survivalWr, then the central term will have an inter-
mediate value, increasing the chances of coexistence. The
same is true if instead the invader combines high l0,i with
low Wi while the resident combines low l0,r with high Wr.
The criterion further shows that the balance between

equilibrium behavior and transient dynamics that is im-
portant for epidemic-transient invasions is also important
for coexistence through epidemic-transient invasions. To em-
phasize this point, we rewrite our coexistence criterion in
terms of the epidemic parameters alone, to identify epi-
demic parameters for which coexistence can occur for at
least some values of the interepidemic survival rates Wr

and Wi:
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Er(R0,r ,Wr)
l0,i

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
equilibrial infection resident

Dr(R0,i, l0,r=l0,i, 1=u)
l0,r

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

competition effects on resident

#

Ei(R0,i,Wi)
l0,r

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
equilibrial infection invader

Di(R0,r , l0,i=l0,r , u)
l0,i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

competition effects on invader

! 1:

ð30Þ

In this coexistence criterion, increases in the preinvasion
equilibrium infection rates Er(R0,i,W i) and Er(R0,r ,Wr) due
to increases in the reproductive numbers of the resident
R0,r and the invader R0,i make coexistence less likely. These
effects, however, can be counterbalanced by increases in
the initial epidemic fitnesses of the invader l0,i or the res-
ident l0,r, which make coexistence more likely. Meanwhile,
the functions Di(R0,r , l0,i=l0,r , u) and Dr(R0,i, l0,r=l0,i, 1=u)
decline slightly with increases in l0,i and l0,r, making
coexistence at least somewhat more likely as l0,i and l0,r

increase.
Epidemic-transient invasions thus make coexistence

more likely because of the counterbalancing effects of the
reproductive number and the initial epidemic fitness of
each pathogen strain on its competitor. Coexistence through
burnout-equilibrium invasions, in contrast, depends on the
reproduction number of each strain but not on the initial
epidemic fitness of each strain. Epidemic-transient inva-
sions thus allow for a different mechanism of coexistence
than burnout-equilibrium invasions.

Quantifying the Likelihood of Coexistence
in Seasonal Environments

Our invasion criteria have shown that epidemic-equilibrium
and epidemic-transient invasions depend on the model pa-
rameters in very different ways. Because of these differences,
the two types of invasion lead to coexistence for different
ranges of the model parameters. Notably, however, model
simulations cannot be used to distinguish these differences,
and we therefore use our invasion criteria to map out the
range of parameters for which coexistence occurs through
each type of invasion.
As an initial illustration of the difference between the

two types of invasion, we map coexistence as a function of
the resident’s reproductive number R0,r under each coex-
istence criterion. To map coexistence through epidemic-
equilibrium invasions, we rewrite the epidemic-equilibrium
invasion criterion, inequality (19), as

(12 Er(R0,r ,Wr))R0,i 1 1, ð31Þ

where R0,i is the invader’s reproductive number and Er

is the resident’s infection rate at burnout at the resident-
only equilibrium, which is determined by the resident’s
reproductive number R0,r and its interepidemic survival Wr.
Because Er(R0,r ,Wr) increases with increasing R0,r, for a

given value of R0,i there will be a maximum value of R0,r

at which an invasion can occur. This maximum is the up-
per limit on R0,r for which an epidemic-equilibrium inva-
sion can lead to coexistence for a given value of R0,i.
To plot coexistence through epidemic-transient in-

vasions, we first express the epidemic-transient coexis-
tence inequality (29) in terms of the relative initial in-
vader fitness g0 p l0,i=l0,r and the ratio of removal rates
u p mi=mr , and we plot the area between Di(R0,r, g0, u)=
(Er(R0,r)

g0 and Ei(R0,i,W i)=Dr(R0,i, 1=g0, 1=u)
g0 . Figure 6

then shows that compared with epidemic-equilibrium inva-
sions, epidemic-transient invasions lead to coexistence for
substantially larger values of the resident’s reproductive
number R0,r. Epidemic-transient invasions can thus strongly
increase the range of parameters for which coexistence is
possible.
To show that coexisting pathogens can be more sim-

ilar when coexistence occurs through epidemic-transient
invasions than when it occurs through epidemic-equilibrium
invasions, in figure 7 we map coexistence as a function of
the instantaneous transmission rates of the resident br and
the invader bi. The figure then shows that the transmission
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Figure 6: Effects of the resident’s reproductive number R0,r on co-
existence. The shaded area shows the range of values of R0,r for
which there exist values of the interepidemic survival rates Wr

and Wi that allow for coexistence. Here, the invader reproductive
number R0,i p 3:5 and the ratio of removal rates u p mi=mr p 2:0.
The vertical line shows the maximum value of the resident trans-
mission rate R0,r p 1:754 that allows for epidemic-equilibrium inva-
sions. For R0,r 1 1:754, coexistence can occur because of an epidemic-
transient invasion; this range is found between the two curves.
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rates that allow for coexistence through epidemic-transient
invasions are closer to the 1∶1 line than the transmission
rates that allow for coexistence through epidemic-equilibrium
invasions. When mi p mr , this effect is so strong that co-
existence is possible for essentially all epidemic parameter
values (remember that the effects of the interepidemic sur-
vival rates are not shown, so coexistence will be possible
for only some interepidemic survival rates). Coexisting path-
ogen strains can thus have much more similar phenotypes
when coexistence occurs through epidemic-transient in-

vasions than when coexistence occurs through epidemic-
equilibrium invasions. More generally, figure 7 shows that
the total area over which coexistence can occur, whether
through epidemic-transient or epidemic-equilibrium in-
vasions, encompasses a broad range of parameter val-
ues. Pathogen coexistence is thus highly likely in seasonal
environments.
To show how coexistence is affected by changes in the

interepidemic survival rates Wr and Wi, we instead fix the
epidemic parameters while mapping coexistence as a func-
tion of Wr and Wi. Figure 8 then shows that coexistence
through epidemic-transient invasions is possible for broad
ranges of Wr and Wi. Notably, coexistence requires dif-
ferences in survival rates of an order of magnitude or more,
and such differences must be larger when the relative re-
moval rate u p mi=mr is larger. Although these differ-
ences may seem large, estimates of interepidemic survival
rates for 16 isolates of the spongy moth baculovirus vary
over at least two orders of magnitude (Fleming-Davies
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Figure 7: Range of invader and resident transmission rates for
which coexistence is possible. Here, we show values of the instan-
taneous transmission rates br and bi for which there exist combi-
nations of interepidemic survival Wr and Wi that permit pathogen
coexistence, for mr p 1, and for a range of values of the invader’s
removal rate mi. In the white band across the bottom of the plots for
which mi 1 1, coexistence is impossible because the invader’s trans-
mission rate bi is so low that the invader’s reproductive number
R0,i p bi=mi ! 1; in this region, the invader is therefore unable to per-
sist even in the absence of the resident. In the white areas around the
1∶1 line, in contrast, coexistence is impossible because the invader
and the resident are too similar. Coexistence then occurs in the col-
ored areas to the upper left and the lower right. In the areas to the
upper left, the invader has high infectiousness, so coexistence requires
that the resident have high interepidemic survival; in the areas to the
lower right, the situation is reversed, so that the resident has high in-
fectiousness and the invader is required to have high survival. In the
red/upper left areas and blue/lower right areas coexistence can occur
through epidemic-equilibrium invasions, while in the yellow areas
and green areas that are respectively adjacent to the red and blue areas
coexistence can occur through epidemic-transient invasions. In the
red and yellow areas the resident must have a higher interepidemic
survival than that of the invader, so that Wr 1 W i, while in the blue
and green areas the invader must have a higher interepidemic sur-
vival than the resident, so that W i 1 W r .
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and Dwyer 2015): the differences in interepidemic sur-
vival rates necessary for coexistence in our model are thus
consistent with observations of interepidemic survival in
the field. Coexistence of isolates of the spongy moth bacu-
lovirus is also common in the field, supporting our overall
conclusion that pathogen coexistence is likely in seasonal
environments.
As we described earlier, coexistence through epidemic-

equilibrium invasions can occur for vanishingly low values
of the survival rate of the more infectious strain. There is,
however, an upper limit above which coexistence is im-
possible; although we cannot write down an expression
for this limit, in the supplemental PDF we use simula-
tions to approximately quantify the limit. This approxi-
mate calculation shows that coexistence through epidemic-
equilibrium invasions for the most part requires even larger
differences in survival rates than does coexistence through
epidemic-transient invasions. Given that coexistence through
epidemic-equilibrium invasions invariably requires larger dif-
ferences in transmission rates than does coexistence through
epidemic-transient invasions (fig. 7), we conclude that
coexistence through epidemic-equilibrium invasions gen-
erally requires that competing strains have more extreme
phenotypes than does coexistence through epidemic-transient
invasions.

Discussion

Our work shows that seasonal bouts of host reproduction
and pathogen transmission can make it possible for a high-
infectiousness/low-survival pathogen strain to coexist with
a low-infectiousness/high-survival pathogen strain. Season-
ality thus leads to pathogen coexistence because it allows
pathogens to specialize on either the epidemic period or the
interepidemic period, thereby allowing pathogens to pursue
different strategies. In nonseasonal pathogen-competition
models, in contrast, the epidemic and interepidemic pe-
riods are the same, so there is effectively only one possi-
ble strategy. Coexistence is therefore impossible in simple
nonseasonal models (Dieckmann 2002).
The type of seasonality that we incorporated into our

model has been observed in many host-pathogen systems
in nature, and we therefore argue that our results are rel-
evant to many different host-pathogen systems. Discrete
bouts of host reproduction follow apparent epidemic burn-
out in viral (Fuller et al. 2012), fungal (Hajek 1999), and
protozoan (Forbes et al. 2012) pathogens of insects and in
viral (Honjo et al. 2020) and fungal (Penczykowski et al.
2015) pathogens of plants. Meanwhile, a slightly different
pattern that is also consistent with our model occurs in
many vertebrate-pathogen interactions, in which a low in-
fection rate in the period leading up to the breeding season
is followed by a spike in the infection rate due to the influx

of new susceptible hosts that accompanies breeding. This
pattern occurs in pestivirus of Pyrenean chamois, Rupicapra
pyrenaica pyrenaica (Beaunée et al. 2015); classical swine
fever in wild boars, Sus scrofa (Scherer et al. 2019); cowpox
virus in field voles, Microtus agrestis (Begon et al. 2009); the
respiratory pathogen Bordetella bronchiseptica (Pathak et al.
2011) and the myxoma virus (Dwyer et al. 1990) in the
European rabbit, Oryctolagus cuniculus; white nose syn-
drome, Pseudogymnoascus destructans, in multiple species
of bats (Langwig et al. 2015); Ebola and Marburg viruses
in the Egyptian fruit bat, Rousettus aegyptiacus (Hayman
2015); avian flu in multiple species of dabbling ducks (Van
Dijk et al. 2014; Lisovski et al. 2017); beak-and-feather vi-
rus disease of crimson rosellas, Platycercus elegans (Mar-
tens et al. 2020); and the pathogenic trematode Ribeiroia
ondatrae in Pacific chorus frogs, Pseudacris regilla (McDevitt-
Galles et al. 2020).
An infectiousness-survival trade-off is necessary for

coexistence in our model, and it is therefore important
to note that empirical support for pathogen fitness trade-
offs is generally strong (Alizon et al. 2009; Leggett et al.
2013); a meta-analysis of 29 separate studies detected sta-
tistically significant relationships between pathogen rep-
lication and virulence and between pathogen replication
and transmission (Acevedo et al. 2019). Although trade-
offs between infectiousness and survival have been studied
much less intensively than trade-offs that directly involve
pathogen replication, an infectiousness/survival trade-off
has been documented in the baculovirus of the spongy
moth (Fleming-Davies and Dwyer 2015) and in multiple
fungal pathogens of plants (van den Berg et al. 2010; Pen-
czykowski et al. 2015; Suffert et al. 2015).
A related point is that a trade-off between within-epidemic

infectiousness and between-epidemic survival is analo-
gous to a competition-colonization trade-off. Competition-
colonization trade-offs are typically invoked in the context
of spatial dynamics, such that two organisms repeatedly
colonize patches that are episodically vacated by distur-
bances. Coexistence can then occur because a species with
high dispersal can briefly colonize vacant patches before be-
ing displaced by a second species with greater competitive
ability within a patch (Bolker and Pacala 1999). In our case,
high interepidemic survival analogously allows a competi-
tor to briefly “colonize” a window in time before being
displaced by a competitor with greater competitive ability
within an epidemic.
In addition to supporting our model’s assumptions,

the empirical literature also supports our model’s con-
clusions. Field studies have shown that both seasonality
(Altizer et al. 2006; Filion et al. 2020; Poulin 2020) and
pathogen coexistence (Hellard et al. 2015; Betts et al. 2016;
Fountain-Jones et al. 2018) are common in animal-pathogen
and plant-pathogen interactions in nature. Our model thus
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provides a simple and empirically supported explanation
for a widely observed pattern.
Our coexistence criteria greatly reduced the computa-

tional difficulty of mapping parameter space and thus made
it easier to map the range of parameters over which co-
existence occurs. If we had instead used the full model to
carry out this mapping, we would have had to numerically
integrate five differential equations over long time inter-
vals that could not be specified in advance while iterating
three difference equations until they reached either a co-
existence equilibrium or a single-pathogen equilibrium, as
in figures 3 and 4. Indeed, it is because of these constraints
that our quantification of the upper limit on interepidemic
survival of the more infectious strain (supplemental PDF)
provides only a rough approximation. Mapping parameter
space using the analytic expressions produced by our multi-
ple timescale analysis, in contrast, required only that we
numerically integrate two differential equations over a short
fixed interval, leading to a highly accurate mapping.
The larger significance of our coexistence criteria, how-

ever, is that they led to our second main result: that coex-
istence occurs through two different types of invasions and
that the two different types of invasion occur in adjacent but
different regions of parameter space. Epidemic-equilibrium
invasions, which occur if an invader can cause an epidemic
after the resident’s epidemic has reached the burnout equi-
librium, require that the two competing strains have quite
different phenotypes. Epidemic-transient invasions, which
occur if an invader can take advantage of a transient period
at the beginning of the epidemic when the resident’s frac-
tion infected is low, allow the two competing strains to
have quite similar phenotypes. Coexistence in the two cases
is qualitatively similar because in both cases a less infec-
tious strain can increase its infection rate at the beginning
of the epidemic before being outcompeted by the more in-
fectious strain. In quantitative terms, however, the strat-
egies of the less infectious strains differ very strongly be-
tween the two cases; moreover, simulations alone would
not have revealed this distinction.
Understanding the difference between the two types of

invasion thus required that we derive a coexistence crite-
rion that would allow us to quantify the range of parameters
over which coexistence occurs through each type of inva-
sion. The difference in these parameter ranges is impor-
tant first because it makes clear that pathogen invasions
in seasonal environments can be understood only by con-
sidering both equilibrium epidemic behavior and tran-
sient epidemic behavior, second because the occurrence
of epidemic-transient invasions greatly expands the total
range of parameters over which coexistence occurs, and
third because coexistence through epidemic transients al-
lows pathogen strains to be much more similar than does
coexistence through epidemic-equilibrium invasions. The

most important feature of our invasion criteria is thus that
they provide a conceptually novel perspective on pathogen
coexistence.
The argument that a pathogen’s initial epidemic fitness

can be as useful for understanding pathogen invasions
as its reproductive number was also made in a study of
SARS-CoV-2 variants (Park et al. 2021); that work, how-
ever, focused on short-term dynamics and thus did not
consider how initial epidemic fitness affects long-term path-
ogen coexistence. Our work therefore appears to be the first
to disentangle the relative importance of equilibrium be-
havior and transient dynamics in long-term pathogen co-
existence. Epidemic-transient invasions may thus represent
an overlooked mechanism by which pathogens coexist in
nature.
As we described, the classical approach to pathogen co-

existence is to consider only whether invasion can occur
when one strain is at its single-strain equilibrium (Dieck-
mann 2002). Although we have shown that in seasonal
environments this equilibrium approach must further ac-
count for differences in interepidemic survival, otherwise
the approach is the same as in the nonseasonal case. By
considering transient dynamics, however, we have shown
that pathogen competition in seasonal environments can
alternatively be determined by a balance between the re-
productive numbers of the resident R0,r and the invader R0,i

on the one hand and the initial epidemic fitnesses of the
resident l0,r and the invader l0,i on the other hand. The
analysis that produced this result is sufficiently different
from classical equilibrium-based analyses that carrying out
the analysis required a significant conceptual leap.
Although for convenience we have described the com-

peting pathogens in our model as following one of two strat-
egies, such that one pathogen has high infectiousness and
low interepidemic survival and the other has low infec-
tiousness and high interepidemic survival, this wording im-
plies a false dichotomy; in reality, our model allows for a
continuum of strategies, such that different strategies take
advantage of the window of opportunity near the begin-
ning of the epidemic to different degrees. It is therefore
more accurate to say that our model allows for coexistence
through multiple mechanisms. The question of whether
these multiple mechanisms can lead to the coexistence
of more than two strains is then an avenue for further
research.
A related point is that, as we described, a previous study

used an evolutionary branching analysis to similarly ar-
gue that seasonality can lead to coexistence (Hamelin et al.
2011); because evolutionary branching analyses explicitly
consider a continuum of strategies, a similar approach may
be useful for understanding the evolutionary dynamics
of coexistence in our model. An important caveat, how-
ever, is that evolutionary branching analyses assume that
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phenotypic changes are small, whereas observations of the
evolution of virulence of the myxoma virus of European
rabbits, O. cuniculus (Dwyer et al. 1990; Kerr et al. 2017),
and the evolution of higher transmission in the SARS-
CoV-2 virus of humans (Kistler et al. 2022) suggest that
pathogen evolution often leads to large phenotypic changes.
Although both our model and the model of Hamelin

et al. (2011) lead to the conclusion that seasonality can
allow for pathogen coexistence, the model of van den Berg
et al. (2010) instead leads to the conclusion that season-
ality cannot allow for pathogen coexistence. This differ-
ence is apparently due to differences in the assumptions
that the models make about how infections during one
epidemic affect the start of the next epidemic. In our model,
the fraction infected at the beginning of an epidemic is de-
termined by the cumulative fraction infected during the
previous epidemic, while in the van den Berg et al. model
the fraction infected at the beginning of an epidemic is de-
termined by the fraction infected at the time when the pre-
vious epidemic ended. Like the van den Berg et al. model,
the Hamelin et al. model assumes that what matters is the
fraction infected at the time when the previous epidemic
ended, but the Hamelin et al. model also includes a single
additional round of infection before the next epidemic be-
gins. In our model and in the Hamelin et al. model, infec-
tions during the epidemic period thus have a bigger effect
on the infection rate at the beginning of the next epidemic
than in the van den Berg et al. model, so strains with high
interepidemic survival in the former two models have a
bigger advantage, making coexistence more likely. Our
model’s assumption is supported at least qualitatively by
the literature on a wide range of host-pathogen systems
(Thompson and Scott 1979; Murray and Elkinton 1989;
Hajek 1999; Penczykowski et al. 2015; Suffert et al. 2015;
Becker et al. 2020; Honjo et al. 2020), but Hamelin et al.
and van den Berg et al. similarly argue that their mod-
els’ assumptions are supported qualitatively by literature
on at least some plant-pathogen systems. The existing lit-
erature therefore appears to be insufficient to determine
which of the models is most general and realistic. Part of
the problem is that empirical tests of model assumptions
about interepidemic survival are extremely rare (but see
Fleming-Davies and Dwyer 2015), so such tests are an im-
portant future direction.
In arguing for the importance of seasonality we are not

arguing against population structure as a mechanism of
pathogen coexistence. Indeed, in previous work with col-
leagues we argued that population structure, in the form
of differences in the level of variation in host susceptibil-
ity to different pathogen strains, a type of genotype-by-
genotype interaction, helps to explain coexistence of strains
of the spongymoth baculovirus (Fleming-Davies et al. 2015).
That work nevertheless suggested that a trade-off between

within-epidemic infectiousness and interepidemic survival
could lead to coexistence, motivating the work that we
present here. In analyzing the effects of seasonality, our in-
tent is therefore to understand the importance of a mech-
anism for which we have supporting data from a host-
pathogen system in nature; although population structure
almost certainly enhances the likelihood of coexistence in
the spongy moth-baculovirus system, the importance of
seasonality as a mechanism that allows for pathogen coex-
istence in that system or in any other host-pathogen sys-
temhas not beenwidely recognized.Moreover, by showing
that seasonality can provide an explanation for pathogen
coexistence when population structure is unimportant,
we have shown that seasonality may explain coexistence
for host-pathogen systems in which population structure
plays little to no role. A key conclusion of our work is
thus that population structure is not necessary for patho-
gen coexistence.
From this perspective, it is important to note that our

multiple-timescale analysis is sufficiently general that it
may be useful for understanding systems in which both
seasonality and population structure are important. In
such cases, our method of analysis should again make
it possible to write down an approximate expression
for the fraction infected (Gart 1968; Andreasen 2003).
In future work we will therefore apply our analysis to
understanding the combined effects of seasonality and
population structure on pathogen coexistence, thereby
achieving a more general understanding of the role of
seasonality in mediating pathogen coexistence. More
immediately, the analysis could be useful in understand-
ing the dynamics of pathogen coexistence in the seasonal
plant-pathogen models of van den Berg et al. (2010) and
Hamelin et al. (2017) as well as in the seasonal sheep-
pathogen model of Roberts and Heesterbeek (1998).
By showing that pathogen coexistence is a likely out-

come in seasonal environments, we have extended pre-
vious results showing that seasonality and host evolution
play key roles in host-pathogen population cycles (Páez
et al. 2017; Dwyer et al. 2022). We therefore argue that
seasonality is of general importance in modulating the
roles of both pathogen competition and natural selection
in host-pathogen interactions and thus that host-pathogen
models that allow for seasonal bouts of transmission and
host reproduction provide an important tool for understand-
ing the evolutionary ecology of host-pathogen interactions.
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