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Classical models of biological invasions generally assume that introductions consist of sin-

gle releases of organisms, whereas in nature successful invasions are usually the result of

repeated immigration events. A straightforward consequence of such repeated events is

that they are likely to increase invasion success. In this article, we consider a less-obvious

consequence, namely how repeated immigration events interact with the spatial disper-

sion of immigration. We construct a spatially explicit model that includes Allee effects and

population diffusion, so that repeated introductions must be concentrated in order for the

population to exceed the Allee threshold over a critical minimum area and successfully

invade. We use this model to show that the spatial dispersion of immigration events is of

key importance in determining invasion success. Specifically, invasion risks decline when

immigration events are dispersed more widely. Because of this effect, immigration events

that occur close to habitat boundaries are likely to lead to higher invasion risks, as dis-

persing organisms are forced back towards the source of immigrants. These results have

important implications for efforts to reduce the risk of aquatic invasions due to discharges of
ballast-water by commercial ships. When ballast discharge occurs either far from port, and

thus far from habitat boundaries, or far from other ballast discharge events, and thus with

wider dispersion, then invasion risks should be greatly reduced. Our work demonstrates

the importance of spatial structure for understanding ecological problems, and shows how

mathematical models can be useful in guiding environmental management.

invaded (Crawley, 1987; Tilman, 1997; Levine and D’Antonio,
. Introduction

nvasive species often alter ecological processes (Lodge, 1993;
ala et al., 2000; Stein et al., 2000; Grigorovich et al., 2002),
ometimes with important consequences for the economy

Canyon et al., 2002; Pimentel et al., 2002) and for human
ealth (Canyon et al., 2002; Kim, 2002; Lounibos, 2002). Many
ecent studies have attempted to assess invasion risks by iden-
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tifying characteristics that make some species more likely to
invade (Baker and Stebbins, 1965; Baker, 1974; O’Connor, 1986;
Veltman et al., 1996; Williamson and Fitter, 1996; Schiffman,
1997), or that make some communities more likely to be
nces, University of Notre Dame, Notre Dame, United States.

1999; Lonsdale, 1999; Richardson et al., 2000). General results,
however, have been few (Levine and D’Antonio, 1999; Mack et
al., 2000; Veltman et al., 1996; Kolar and Lodge, 2001). Moreover,
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increased human translocation of non-indigenous species is
facilitating invasions that otherwise would not have occurred
over ecological time scales (Muhlenbach, 1979; Courtenay and
Meffe, 1989). These translocations are often independent of
inherent dispersal ability (Ashton et al., 1989; Williamson
and Fitter, 1996; Smith et al., 1999; Frenot et al., 2001;
Ricciardi, 2001). To understand the time evolution of these
human-facilitated invasions, we therefore focus on immigra-
tion processes (Williamson and Fitter, 1996; Grigorovich et
al., 2002) rather than on species characteristics and com-
munity properties. An example of particular importance is
the incidental release of nonnative zooplankton into aquatic
ecosystems during ballast-water discharge from commercial
ships (Grigorovich et al., 2002; MacIsaac et al., 2002). Preventing
these introductions is far more cost-effective than attempting
to eradicate invaders after establishment (Mack et al., 2000).
To assist in understanding how to reduce the risk of such
invasions, we analyze models of repeated introductions, in
which invasion risk is measured in terms of the time it takes
for an invasion to be successful. For purposes of compari-
son, we begin by constructing temporal models of repeated
invasions, and then we combine these models with existing
spatial-invasion models, to demonstrate how spatial disper-
sion, dispersal and habitat boundaries affect invasion risks.

Models have played an important role in efforts to under-
stand biological invasions (Murray, 2002), are widely used to
analyze invasion data (Lubina and Levin, 1988; Clark et al.,
1998), and have been used to guide the management of inva-
sive species (Sharov et al., 2002). Most existing models of
species invasions, however, assume that invading populations
are founded by single releases of organisms, whereas in nature
successful invasions are often the result of repeated coloniza-
tion events, whether accidental or intentional (Moody and
Mack, 1988; Veltman et al., 1996). Recent studies have shown
that increases in the frequency and magnitude of immigration
events are likely to dramatically increase invasion risks, as one
might expect (Drake and Lodge, 2006). The models in question,
however, do not include explicit space, whereas in nature, spa-
tial structure often has profound effects on population growth
(Tilman and Kareiva, 1997). Moreover, explicit spatial struc-
ture is crucial for considering repeated introductions, because
both habitat quality (Hanski, 1999) and the initial size of intro-
ductions (Kot, 2001) are likely to vary spatially. In this article,
we therefore construct a model of repeated introductions that
explicitly includes space, and show how the dispersion of
introductions in space and time can interact with the num-
ber of individuals introduced, their population dynamics, and
their movement behavior, to affect invasion success. We use
the model to show that it is possible, and practical, to dra-
matically reduce invasion risk by manipulating the spatial
location of introductions. Our results thus have implications
for reducing the risk of invasions that result from ballast-water
discharge, but our models are general enough that they can be
applied to other invasion scenarios as well.

The model that we use is a stochastically perturbed
reaction-diffusion equation. Reaction-diffusion equations

have a long and successful history in invasion biology because
they allow for population growth, dispersal, and explicit spa-
tial structure. To explain our approach, we begin with one
of the earliest spatially explicit invasion models, known as
2 0 6 ( 2 0 0 7 ) 63–78

“Fisher’s equation” (Murray, 2002);

∂N

∂t
= rN

(
1 − N

K

)
+ D∇2N. (1)

Here N is population size, t is time, and the population under-
goes logistic growth, with reproductive rate r and carrying
capacity K. The diffusion constant, D, specifies the rate of pop-
ulation spread, and ∇2 is

∇2N =
(

∂2N

∂x2
+ ∂2N

∂y2

)
, (2)

or in words, the second derivative of population density across
space. Eq. (1) therefore says that the change in population size
N at spatial location (x, y) with time is due to population growth
at that location, as well as to the movement of individuals,
which in turn depends on the sign of ∇2N at that location.

For our purposes, two important predictions emerge from
Eq. (1). The first is that there is a critical habitat areaAcrit below
which the population will go extinct. This occurs because local
population decline via diffusion across the relatively large cir-
cumference of the patch will dominate population growth
within the relatively small area of the patch (Kot, 2001). The
critical area,

Acrit = �

(
D

r

)1/2
, (3)

depends on both local population growth, as governed by r,
and on the population spread rate, as governed by D. Note that
there is a critical area Acrit even when population growth is
instead exponential (Skellam, 1951; Kierstead and Slobodkin,
1953). The existence of this critical area is an important dif-
ference between spatial and non-spatial models of population
growth. The second important prediction of the Fisher model
is that all initial populations introduced into habitats larger
than Acrit will invade and eventually spread into the remain-
ing habitat at a constant speed c = 2

√
rD. Thus, if this critical

area is exceeded, the invasion succeeds deterministically.
Lewis and Kareiva (1993) replaced logistic growth in Fisher’s

equation with a growth function that allows for Allee effects,
such that, when population densities are below the Allee
threshold a, the population growth rate is negative. This
model, known as the “Nagumo equation”, is,

∂n

∂t
= rn(1 − n)(n − a) + D∇2n. (4)

Here, and hereafter, we have scaled population density N by
dividing by the carrying capacity K ( i.e., n = N/K). The param-
eters r and D can also be removed by additional rescaling,
but they play a key role in determining the invasion criterion,
Rcrit, described below, and so are best retained (Kot, 2001). The
scaled population size n therefore ranges from 0 to 1, while
the Allee threshold is constrained to a < (1/2) by Eq. (5).

The addition of Allee effects is important because it intro-

duces a new criterion for invasion success (Lewis and Kareiva,
1993; Kot et al., 1996). Specifically, invasion success in model
(4) requires the current population size to be at or near the
carrying capacity over some minimum area. Under the sim-
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lifying assumption that the area is circular, the radius Rcrit of
his minimum area is,

crit =
(

D

2r

)1/2 (
1

(1/2) − a

)
. (5)

This expression shows that increasing values of r reduce
he critical invasion area, while increasing values of the dis-
ersal parameter D or the Allee threshold a instead increase
he critical invasion area. Notice in particular that initial areas
ith radius R < Rcrit fail deterministically.

For studies of invasion risks, the spatial spread model (4)
hus includes the useful feature that there can be immigration
vents that do not lead to invasion success, even if the habi-
at patch is large enough. Populations that occupy areas with
adius less than Rcrit do not disappear instantaneously, how-
ver, and so may linger long enough to be rescued from extinc-
ion by later arrivals, the so-called “rescue effect” (Brown
nd Kodrick-Brown, 1977). Indeed, although most reaction-
iffusion equations assume that populations are closed to

mmigration, allowing for deterministic, density-dependent
mmigration can lead to persistence even when the habitat
atch is smaller than the critical area (Skellam, 1951; Kierstead
nd Slobodkin, 1953). Similarly, allowing for multiple immi-
ration events dramatically increases the speed of range
xpansions by creating patchy invasion fronts (Shigesada and
awasaki, 1997; Lewis, 1997). Useful models of invasions thus

equire both repeated, stochastic immigration events, and
patial structure, and here we construct such a model.

. Methods

.1. Modeling repeated immigration events

o build a spatially explicit model with repeated immigration,
e add a stochastic perturbation term to Eq. (4). Because to
ur knowledge models of repeated immigration have not pre-
iously been considered, we begin by constructing temporal
odels of repeated immigration that clarify how it affects

nvasion risks in well-mixed, spatially homogeneous systems.
n the absence of any population dynamics, repeated immi-
ration can be modeled as a compound Poisson process of the
orm (Parzen, 1962),

(t) =
N(t)∑
n=1

Yn. (6)

ere {Yn} is a sequence of independent, identically distributed
andom variables, each representing the number of individu-
ls added by the nth introduction event, so that X(t) is the sum
f all the individuals introduced by time t. For this model, the
xpected number of individuals at time t is then,

[X(t)] = �tE[Y], (7)
here � is the mean rate of occurrence of perturbations and
[Y] is the mean number of individuals per introduction. Thus,
[X(t)] can be calculated directly when the distribution of Y is
nown.
2 0 6 ( 2 0 0 7 ) 63–78 65

In the context of invasions, we also need to consider
the effects of population growth (or decline), that change
population size between introductions. In particular, we are
interested in the case for which there is an Allee threshold a,
so that populations with density below a decline, while those
above the threshold increase. Given initial densities of zero,
we would then like to calculate the expected time it takes
for the population to exceed the threshold E[Ta], given the
opposing effects of introductions and population decline. To
describe this process mathematically, we use the so-called
“shot noise process”, which is essentially a modification of
Eq. (6) to include negative exponential interarrival dynamics
(Cox and Miller, 1965; Cox and Isham, 1980). Thus, we use a
shot noise process to describe the case for which the num-
ber of organisms is initially zero, the number introduced at
each event follows an exponential distribution, and for which
population dynamics consist of exponential decline between
arrivals. For such processes, Laio et al. (2001) showed that,
starting from 0, the expected time E[Ta] at which the popu-
lation size first crosses the threshold a, known as the mean
first passage time or “MFPT”, is

E[Ta(0)] = 1
�

+ �a

�

∞∑
k=0

(�a)k� (1 + (�/ˇ))
(k + 1)� (1 + (�/ˇ) + k)

(8)

Here � is the Poisson rate parameter governing the average
interarrival time, � the inverse of the mean introduction size,
ˇ is the linearly increasing change in the rate of exponential
population decline as population density increases, and � (·)
is the gamma function. Because population growth is always
positive after the Allee threshold a is exceeded at time Ta,
E[Ta] is effectively the expected invasion time in this nonspa-
tial process. Here, we have assumed that sub-threshold Allee
dynamics are described by exponential decay and in that case,
Eq. (8) provides a useful summary of the underlying stochastic
process, and serves as a simple case to which we can com-
pare more realistic models. In particular, when � � ˇ, so that
arrivals are very infrequent compared to the rate of population
decline, we have the approximation,

E[Ta(0)] ≈ (ea� − a�)
�

. (9)

In words, Eq. (9) says that starting from population size 0,
the mean invasion time grows linearly with mean interarrival
time (1/�), but grows exponentially with decreases in mean
introduction size (1/�) and threshold size a. Conversely, as the
product a� approaches 0, the mean invasion time approaches
the constant (1/�). As we will show, these results are qualita-
tively consistent with more realistic models.

2.2. Including more realistic population dynamics and
spatial structure

Although these simple approximations are useful in guiding
our intuition, invasions in nature are likely to involve addi-

tional complexities. In our more realistic models, we therefore
consider Allee dynamics that change smoothly as we cross the
Allee threshold, lognormally distributed introduction mag-
nitudes, and spatial structure. Nevertheless, the underlying
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model retains the shot noise process that we introduced
above. Symbolically, we represent our spatial model as the
randomly perturbed partial-differential equation,

∂n

∂t
= rn (1 − n)(n − a) + D∇2n +

∑
i

h(x,y;i)ı(t − �i) (10)

with n = (N/K) again being the population size scaled by the
carrying capacity and �(.) being the Dirac delta function. The
first two terms on the right-hand side of Eq. (10) are thus the
same as in the deterministic Nagumo Eq. (4). The third term,
involving the random variable h(x,y,;i), which is also scaled by K,
represents our triply stochastic immigration process. Specif-
ically, like the compound Poisson process (6), introductions
occur according to a Poisson process with rate parameter � so
that the interarrival times, �i, between successive immigration
events are exponentially distributed with mean (1/�) (Ross,
1996). Consequently, the delta function ensures that popula-
tion size is perturbed by introductions only at the random,
exponentially distributed times, �i. Second, the magnitude of
each immigration event ht, where t is the introduction time,
is a lognormal random variable, such that log ht is a normal
random variate with mean � and variance 	2. Finally, the loca-
tion �x at which an immigration event occurs is also a random
variable, drawn from distributions that are discussed below.
The introductions ht are thus independent and identically dis-
tributed. Moreover, the magnitudes of the immigration events
are independent of the Poisson process that determines when
they occur, and of the spatial locations where they occur,
making the magnitude, timing, and location of releases inde-
pendent of each other.

For clarity we assume that initial population density is
zero everywhere, so that the initial condition of Eq. (10) is
n(x, y; 0) = 0. Also, because we are interested in the effects of
reflecting (i.e., uncrossable) boundary conditions, we assume
that individuals cannot leave the habitat. Mathematically, we
write these conditions as

∂n

∂x
(xmin, y; t) = 0, (11a)

∂n

∂x
(xmax, y; t) = 0, (11b)

∂n

∂y
(x, ymin; t) = 0, (11c)

∂n

∂y
(x, ymax; t) = 0. (11d)

We have thus added stochastic immigration to Eq. (4), in the
form of a term that prescribes the stochastic, multiple arrivals
that are typical of invasion processes. Because we assume that
dispersal is diffusive and that there is an Allee effect, and
because Allee effects are best-known to be caused by an inabil-
ity to find mates at low density, our model is perhaps most
immediately applicable to sexually reproducing plankton or
insects, organisms for which diffusion often provides a good

description of dispersal (Okubo, 1980). For aquatic organisms
in particular, we are essentially assuming that the organisms
have little control over their dispersal and that diffusion and
turbulence strongly influence spatial location (Koehl, 1991).
2 0 6 ( 2 0 0 7 ) 63–78

Viewed in this light, Eq. (4) can be thought of as a deterministic
approximation to models that allow for stochastic variabil-
ity in movement and population growth among individuals
(Andow et al., 1993). There is, however, a key difference in
the stochasticity that we introduce in Eq. (10). Specifically, the
shot noise process represents changes at larger scales of time,
space and density than the scales for stochastic population
growth and dispersal that are approximated by Eq. (4). In other
words, immigration events are assumed to be large relative
to the instantaneous changes in population density that stem
from continuous population growth and diffusive spread. Nev-
ertheless, we are still interested in perturbations that are
smaller than the Allee threshold, and so the immigration
events in our model generally occur at population densities
ht < a and initially occupy areas less than the threshold area
Rcrit. We are therefore interested in arrival densities that are
smaller than the single propagules that MacArthur and Wilson
(1967) defined as the minimum number of individuals required
to successfully establish a population, but which can never-
theless accumulate in spatio-temporal patterns governed by
Eqs. (10) and (11), and sometimes, eventually lead to invasion.
Below, we explore how the components of the stochas-
tic arrival process combine to influence the speed of the
latter.

2.3. Simulating the models

Adding the repeated immigration process to the spatial model
means that we must resort to simulation to analyze the
model. Because our intent is to understand invasion risks,
it is important to realize that the probability of invasion is
not a useful metric, because invasions are certain over the
long run, and so the probability of invasion is always 1. To
quantify invasion risks, we therefore instead use log10 of
the time to invasion success, TI as our dependent variable
(Renshaw, 1991). In practice, we first specify the frequency,
magnitude and dispersion of arrivals, and then we use the
model to compute the expected (or mean) time to invasion
success E(TI), read as, “the expected time to invade”, where
the mean is calculated across stochastic realizations. We can
then conclude that a given frequency, magnitude and disper-
sion of releases increases invasion risk if it leads to lower
values of E(TI). In summary, we use frequency, magnitude and
variability around the mean release location (x̄, ȳ) as our inde-
pendent variables, E(TI) as our dependent variable and Eq.
(5) for the critical radius Rcrit as our criterion for invasion
success.

We solved Eq. (10) using standard numerical techniques for
partial differential equation models (Press et al., 2002), Poisson
processes in time (Renshaw, 1991) and generation of random
variates (Evans et al., 2000). We solved the model for Tmax = 104

time steps, with an integration time step of 0.01, or until the
area occupied by the portion of the invading population that
was within 5% of carrying capacity exceeded Rcrit, whichever
occurred first. Empirical tests of this cut-off rule showed that
in every case, once R was achieved, the invasion was self-
crit

sustaining and the organism went on to fully invade the space.
In each computer simulation, we simulated the full model Eq.
(10) 60 times for each parameter combination (see Table 1) and
we report log10 of the average invasion time E(TI) across the
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Table 1 – Parameters, their descriptions and values used
in our stochastic spread model, Eq. (10)

Type Parameter Meaning Range

Deterministic r Population growth 1.6
D Diffusivity 0.1
a Allee threshold 0.01
dt Time step 0.01

Stochastic x, y Spatial coordinates 0–139
	2

(x,y)
Variance in space 0.05–0.5

� Mean introduction size 0.01–0.3
	2 Variance in intro size 0.1

6
w
e
i
v
c
t
s
b

F
a
c
(
�

� Introduction rate 0.01–0.3

Parameters that were varied are shown with the range of variation.

0 replicate invasions. We then explored how E(TI) changed
ith different parameterizations of Eq. (10). In addition, to

xplore how invasion risk varies with distance from a reflect-
ng boundary, we explored how expected invasion time E(TI)
aried as we changed the mean introduction point from the

enter of the plane, to near the edge of the plane, and finally to
he corner of the plane. We use these latter simulations to con-
ider how distance from a harbor affects the risk of invasion
ecause of ballast-water discharge, on the reasonable assump-

ig. 1 – Illustration of bivariate pdfs for probabilities of releases i
reas were 140 × 140. (a) traditional central point release at (x̄, ȳ).
ontrast, the cases that we considered incorporate non-zero vari
c) edge release, normal × lognormal. (d) corner release, lognorm
2 = 0.5 and thus the lognormal shape parameter was

√
�2 = 0.7
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tion that harbor edges represent impenetrable boundaries for
aquatic organisms.

To show how frequencies and magnitudes of introductions
affect invasion risks, we quantified invasion risk for 30 differ-
ent frequencies of immigration events, as determined by the
Poisson rate parameter �, crossed with 30 different introduc-
tion magnitudes, as determined by the median immigration
magnitude �, for a total of 900 parameter combinations. �, the
rate of our Poisson process, ranged from 0.01 to 0.3. These val-
ues correspond to immigration events that occur, on average,
once every 100 to once every three time steps, respectively.
Median immigration magnitudes � ranged from 0.01 to 0.3,
thus representing 1–30% of carrying capacity K, or alterna-
tively, in terms of the Allee threshold, a through 30a. To
generate interarrival times, we followed the algorithm pre-
sented by Renshaw, (1991, p. 38). Specifically, for each time
unit in the simulation, we compared the elapsed time t since
the last introduction to a random draw of the interarrival
time �. If t ≥ �, we generated a new introduction with mag-
nitude drawn from a lognormal distribution with median �
and shape parameter 	 = 0.1. This density was then added
to the population at a random location chosen from one of
three different probability density functions, which are shown
in Fig. 1 b–d. Each of these functions represents a different

n various regions of the plane. Note: actual simulation
Note that the variance around the release point is zero. In

ance, as follows. (b) central release, bivariate normal.
al × lognormal. For each figure, the normal variance was
071.
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tions from (a) N (0,1) and (b) a lognormal distribution with
the two distributions is similar.

Table 2 – Conceptualization of our simulations
evaluating the effects of frequency, magnitude and
dispersion of introductions on time to invasion

Release frequency Release sites Release size

Low Clustered Small
Large

Dispersed Small
Large

High Clustered Small
Fig. 2 – Comparison of spatial extent of histogram of realiza
identical variance. Note that the spatial interval spanned by

assumption about how far away immigration events are likely
to occur from habitat boundaries, and how dispersed these
events are.

For purposes of comparison, Fig. 1 a shows the typical
assumption of previous invasion models, in which all indi-
viduals are released at the same time and place, far from
any boundaries. Fig. 1 b then shows a case in which release
sites are similarly far from boundaries, but for which immi-
gration events are distributed randomly about a central point,
such that the locations (x, y) were drawn from a bivariate
normal distribution. Fig. 1 c next shows a case in which
releases occurred near an edge of the plane, and thus close
to one habitat boundary, so that x was chosen from a log-
normal distribution, while y was normal as before. Finally,
Fig. 1 d shows a distribution in which releases occurred in
the corner, and thus close to two habitat boundaries, so that
both x and y were chosen independently from a lognormal
distribution. The latter two cases are intended to represent
situations in which ballast discharge occurs close to a har-
bor. Because in practice harbor geometry is likely to be quite
complex, in the interests of simplicity and generality we con-
sider only the cases in which discharges are close to one or
two boundaries of a square habitat, rather than attempting
to approximate the true complexity of a particular harbor.
In order to compare the effects of variance around (x̄, ȳ), we
transformed 	2 in the lognormal distribution so that, although
the positions were all positive, they spanned the same spatial
extent as corresponding variates from a normal distribution
(see Fig. 2).

Eq. (5) for Rcrit defines the radius of a circular area over
which a potentially invasive population must be at or near
carrying capacity K in order to succeed. We therefore used this

formula in its original form to measure the area of our sim-
ulated populations in the center of the plane. At the edge of
the plane, however, it is necessary to transform the formula to
represent the radius of a half-circle that covers the same area
Large
Dispersed Small

Large

as a circle of radius Rcrit,

Rcrit(1/2) =
√

2Rcrit. (12)

Similarly, the formula for the minimum area of a popula-
tion invading in the corner of the plane is,

Rcrit(1/4) = 2Rcrit. (13)

Table 2 shows a conceptualization of our simulations.

3. Results

3.1. Non-spatial model and approximations

For purposes of comparison, we first consider a non-spatial
version of our spread model, Eq. (10), by temporarily assuming
that dispersal is so high that spatial structure is of no impor-

tance. To understand the results of this model, note first that
the deterministic non-spatial Allee-effects model,

dn

dt
= rn(1 − n)(n − a) (14)
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Fig. 3 – Population size n(t) vs. t for a population growing
according to Eq. (15) the stochastically perturbed
non-spatial Nagumo equation. The Allee threshold was 0.3
(dotted line) and n(t) was scaled so that carrying capacity
was 1. Arrivals occurred according to a Poisson process
with rate parameter � = 6 giving a mean interarrival time of
≈
p

h
e
i
i
I

w
d
c

f
a
a
t
m
l
b
p
1
t
a
o
c

s
e
t
r
t
t

17 time units. The arrow marks the time at which the
opulation was within less than 1% of the carrying capacity.

as locally stable equilibria at n∗ = 0, 1 and an unstable
quilibrium at n∗ = a (Kot, 2001). When we add stochastic
mmigration to this model, as we did to our spatial model (10),
mmigration events will move the population away from 0.
ncorporating the stochastic process into Eq. (14) gives,

∂n

∂t
= rn(1 − n)(n − a) +

∑
i

hiı(t − �i) (15)

here the details of the stochastic term are identical to those
escribed for Eq. (10), although obviously without the spatial
omponent �x.

If the immigration events in Eq. (15) are large enough and
requent enough, eventually they push the population density
bove the Allee threshold a. Fig. 3 illustrates this process for
single realization of this model, starting at n0 = 0.1, below

he Allee threshold of a = 0.3. Immigration events of random
agnitude then occurred at random times, seen as vertical

ines in the figure. Until about time 100, however, these pertur-
ations were small enough, and infrequent enough, that the
opulation stayed below the Allee threshold. At around time
00, a series of rapid arrivals overwhelmed negative popula-
ion growth and pushed the density up near the threshold, and
t around time 115, the population size exceeded the thresh-
ld and thereafter increased deterministically to the carrying
apacity.

The process described by Eq. (15) is similar to that of the
hot noise process that Laio et al. (2001) used to derive the
xpected invasion-time Eq. (8). The main differences are first

hat, for the Nagumo model, the per-capita population growth
ate below the Allee threshold declines with distance below
he invasion threshold, whereas for the shot noise process,
he analogous rate of change is constant below the threshold.
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Nevertheless, Fig. 4 a–c shows that exponentially declining
population density is a good approximation to the more com-
plex population growth function of the Nagumo model when
population density is below m, the density for which popula-
tion growth rate is at a minimum. Second, for the perturbed
Nagumo model, the introduction magnitudes are lognormally
distributed, while for the shot noise process they are exponen-
tially distributed. Fig. 4 d shows that an exponential density
function is at least a reasonable approximation to a lognormal
density function when the standard deviation of the lognor-
mal is near 1, because of structural similarities in the pdf
formulae for the two distributions when 	 = 	2 = 1 (see, for
example, Hastings and Peacock, 1975). This figure also illus-
trates, however, that agreement between the two distributions
disappears as lognormal variability increases or decreases.

Despite these differences, the expected time to cross the
invasion threshold as predicted by Eq. (8) for the shot noise
process is often fairly close to the mean time to cross the
invasion threshold for the Nagumo model (Fig. 5) when the
standard deviation of the lognormal arrival sizes is 	 = 1.
To calculate the MFPTs for the Nagumo model, we numeri-
cally solved Eq. (15) and averaged the Allee threshold crossing
times. The approximation does rather poorly when the mean
introduction size is small and the frequency of introduc-
tions is low (top left of panel 5a), but is often reasonably
accurate for larger introduction sizes (circles and squares
in right side of panel 5a) and higher frequencies of intro-
duction (circles and squares in panel 5b). The figure also
shows that agreement with the approximation is greatly
reduced when variance in the introduction magnitude differs
from 	2 = 1 (triangles in panels 5a and b). This is appar-
ently because increasing variance leads to a larger number
of extremely small arrivals relative to the exponential case, as
illustrated in 4d, and thus to an increase in the mean time to
invasion.

Another statistic of interest for the arrival process
described by Eq. (15) is the number of introductions until the
threshold is crossed. Fig. 6 a shows that, as expected, this num-
ber decreases as introduction size increases. At first, however,
it decreases faster than exponentially, but then slows dramat-
ically. Consequently, the shape of the curve is better fit by a
“power-law”-type function than by an exponential. In other
words, the effect of increasing introduction size becomes
weaker as introduction size increases. This is similar to the
predictions of Eq. (9), in which a vanishing magnitude param-
eter, and hence increasing mean magnitude, led to a constant
invasion risk.

3.2. Effects of space

The basic dynamic captured in Fig. 3 is observed in the spa-
tial model as well, but with the added complication that local
populations that are initially above the Allee threshold a may
nevertheless decline because of diffusion. As a result, the pop-
ulation must be near its carrying capacity over an area of
radius at least R , as in the single-release model, Eq. (5)(Lewis
crit

and Kareiva, 1993). This in turn means that the population
may cross the Allee threshold many times before becoming
established, whereas in the nonspatial case, the population
need only cross the Allee threshold once in order to invade.
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Fig. 4 – (a) Population growth rate vs. population size for the nagumo equation. Notice the unstable equilibrium at a, below
which population growth is negative. The point m is an inflection point below which population growth rate decreases at a
decreasing rate, because there are fewer individuals on which the rate acts. (b) Population size vs. time for a population
started at 0.99a. Population decline begins slowly, accelerates, reaches a maximum at m, then begins to slow again.
Population decline beyond t∗ resembles exponential decay used by Laio et al. to describe inter-shot dynamics. (c) Best fit (in
the least squares sense) of an exponential decay model fit to our nagumo model with n0 = m, showing that below m,
nagumo dynamics can be approximated by exponential decay. (d) Solid line: exponential pdf with equal mean and variance
� = �2 = (1/�) = 0.02, used to generate the magnitude of shots. Dash-dotted line: lognormal pdf with equal mean and
variance � = �2 = 0.02. Dotted line: lognormal pdf with mean � = 0.02 and variance �2 = 1. Dashed line: lognormal pdf with
mean � = 0.02 and variance �2 = 2. Because of similarities in the pdf formulae, lognormal pdfs with �2 = 1 are most similar

to exponential pdfs with the same mean.

To illustrate this effect, Fig. 6 b shows that for a wide range
of mean introduction sizes in the spatial model, population
levels cross the Allee threshold hundreds of times on aver-
age (note the difference in vertical axis scale as compared to
panel 6a), only to fall below the threshold again as individ-
uals diffuse away from the release site (dashed lines). Even
when introduction magnitudes are sufficiently large that the
invasion is eventually successful (solid lines), densities repeat-
edly fall below the threshold and undergo negative population

growth until “rescued” by later arrivals. Thus, the eventual
success of the spatial invasion depends to a far larger extent on
the rescue effect than does the nonspatial case. This effect is
more pronounced when introductions are dispersed (squares)
instead of released at a single location (circles). Indeed, the
number of threshold crossings first increases when releases
are dispersed as larger release numbers lead to an increase
in the number of crossings from below the threshold. As
mean introduction size increases further, threshold cross-
ings decrease because arrival magnitudes are sufficient that
local populations fall below the threshold from above less
often.

Fig. 6 b can be used to illustrate the difference in MFPT

between the nonspatial and spatial models. For all the spatial
simulations represented in the figure, the Allee threshold a =
0.01, which means that the smallest mean introduction size
used in our spatial simulations was ten times the threshold. In



e c o l o g i c a l m o d e l l i n g 2 0 6 ( 2 0 0 7 ) 63–78 71

Fig. 5 – Natural logarithm of MFPT vs. mean introduction magnitude. Mean introductions ranged from 0.01 to 0.25, while
t
e
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he first passage threshold was 0.3. (a) � = 2 yielding an arrival e
very 0.17 time units.

ig. 6 – (a) Mean number of introductions before crossing the All
ine is the best fit exponential approximation to the simulated d

ean introduction number is first faster than exponential, then
ean introduction number asymptotically approaches 1. (b) Natu

ully spatial model (10) as mean introduction size varies. At relat
umerous, but do not lead to invasion by Tmax. As mean introdu
ensity no longer falls below the threshold as often, but diffusio

nvasion. These effects are more pronounced when introduction
elease site (circles). At high mean introduction sizes, invasions
hreshold (solid lines).
very 0.5 time units on average. (b) � = 6 yielding arrivals

ee threshold as mean introduction size varies. The dashed
ata while the dotted line is a power law. The decrease in
at high mean introduction level is slower than exponential.
ral logarithm of the number of threshold crossings for the

ively small introduction sizes (dotted lines) crossing are
ction size increases, crossings decrease because population
n away from introduction sites still prevents successful
s are dispersed (squares) as opposed to focused at a single
are successful and occur with fewer excursions below the
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other words, for every introduction size we simulated with our
spatial model, the nonspatial model would deterministically
proceed to carrying capacity after the first introduction. In
contrast, the models that included spatial dynamics failed to
invade until mean introduction sizes were 0.51 when focused
at a single release site and 0.56 when dispersed around a
central release site. Using the first mean introduction size
that allowed successful invasion under all three treatments
of space (i.e., none, concentrated and dispersed), 0.56, we
can compare the expected time to invade. In the nonspatial
model, this is simply the expected time until the first introduc-
tion or (1/�) = 0.17 scaled time units. The spatial models fell
below the threshold repeatedly before finally invading, how-
ever, and even then depended on the combination of positive
local population growth and subsequent introductions over
long periods of time in order to exceed the invasion criterion
of Eq. (5). When the introductions occurred at a single location
this process involved an average of 3.45 threshold crossings
and took 9448 scaled time units. When the introductions were
instead scattered around the central location point according
to a bivariate normal with mean � = 0 and variance 	2 = 1.2
the process involved 57 threshold crossings and took 9453 time
units. Of course, in practice the magnitude of the nonspatial
overestimation of MFPT depends on the diffusion constant D
in Eq. (10).

To show why spatial dispersion affects invasion time, in
Figs. 7 and 8 we show snapshots of single realizations, for
the cases when releases occur in the center or on the edge
respectively, with the top and bottom rows of each figure
representing low and high variance of release location, respec-
tively (note the differences in z-axis scale in each graph).
These realizations thus show that increasing the variability
around (x̄, ȳ), thereby increasing the dispersion in immigration
events, increases the time that it takes for population den-
sity to build to high levels. Increasing dispersion thus reduces
invasion risk. This effect occurs irrespective of whether the
release location is in the center or at an edge, but it is
much stronger when releases are far from boundaries. This is
because boundaries have an aggregating effect on randomly
spreading populations, and so act to reduce dispersion.

Because the model is stochastic, however, single realiza-
tions do not adequately represent how quantitative changes
in immigration parameters affect invasion times. To system-
atically illustrate how spatial dispersion and distance from
boundaries affect the invasion process, we plotted contours
of average invasion time E(TI) as functions of frequency and
magnitude of immigration events, for different variances of
immigration events and different average distances from
boundaries (Fig. 9). Note that cases for which E(TI) = 4, as in
the isobars furthest to the bottom-left in each panel, are equiv-
alent to invasion failure, because the maximum time of any
given realization was 4 on a log10 scale. The figure shows that,
as one would expect, increases in either the frequency or the
magnitude of introductions lead to shorter invasion times. The
interesting part of the figure is instead that the effects of fre-
quency and magnitude are strongly affected by changes in the

distribution of introduction locations, as in Fig. 8. For example,
Fig. 9 a shows the case when releases take place in the center
of the plane and the variance around (x̄, ȳ) is relatively large,
	2 = 0.5, whereas Fig. 9 b shows the corresponding result when
2 0 6 ( 2 0 0 7 ) 63–78

the variance is relatively low, 	2 = 0.05. Comparison of the two
shows that reducing the variance in release locations leads to
dramatic increases in invasion risk. Fig. 9 c and d similarly
show edge and corner releases, respectively, both with large
variance 	2 = 0.5. Comparison of these two panels to panel 9a
shows that invasion risks are much higher when introductions
occur close to habitat boundaries.

Fig. 10 shows how E(TI) changes with increases in spatial
dispersion of introductions, 	2. Fig. 10 a represents center
releases, Fig. 10 b represents edge releases and Fig. 10 c
represents corner releases. In the center releases, at low
(closed circles, hidden by asterisks) and intermediate (aster-
isks) frequency and magnitude, no invasions occured before
our simulations ended, at Tmax = 104 time units (4 on the log10

scale of our graphs). At the highest frequencies and magni-
tudes, however, and with extremely low variances, invasions
occurred on average at E(TI) ≈ 3.4 time units. As the variance
was increased, for this level of frequency and magnitude, the
log of E(TI) increased to approximately 3.6, which is equiva-
lent to an increase of about a factor of 1.6. When releases
occurred near boundaries, low levels of frequency and mag-
nitude still did not lead to invasion before the simulations
ended, but both intermediate and high levels of frequency
and magnitude often led to successful invasions. The effect of
increasing 	2 was thus to substantially increase E(TI), thereby
reducing the risk of invasion. At the edge (Fig. 10b), even inter-
mediate frequency and magnitude combinations sometimes
failed to lead to invasion, if the dispersion of introductions was
large (	2 = 0.5). In the corner (Fig. 10c), all low-valued combina-
tions again failed, but the intermediate and high combinations
always led to invasion.

4. Discussion

As in previous work (Drake and Lodge, 2006), our model
shows that higher frequencies and magnitudes of immigra-
tion events lead to shorter invasion times and thus higher
risks of invasion. Reassuringly, invasion rates in nature also
increase with increasing frequencies and magnitudes of intro-
ductions (Crawley et al., 1989; Veltman et al., 1996; Williamson
and Fitter, 1996; Kolar and Lodge, 2001; Marchetti et al., 2004;
Cassey et al., 2004). For example, analyses of bird introduc-
tions from New Zealand Veltman et al. (1996) and worldwide
Cassey et al. (2004) suggest that the probability that a partic-
ular species became established increased with the number
of introductions and the number of individuals in each intro-
duction. Studies of intentional introductions of economically
important organisms have shown similar effects of both fre-
quency and magnitude (Hopper and Roush, 1993; Grevstad,
1999; Shea and Possingham, 2000). Depending on the biol-
ogy of the species being introduced, successful introduction
strategies in such cases may involve many small introductions
or a few large introductions, and there are good examples of
successful releases using each strategy (Crawley et al., 1989).
The near equivalence of these alternatives is in qualitative

agreement with the results of our model over a large range
of parameters, yet recommendations in the early biological-
control literature instead suggested that biocontrol agents
should be introduced in the form of a small number of releases
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Fig. 7 – Comparison of changes in population density over time for two levels of variability around (x̄, ȳ) in center of the
plane. (a) and (b) are low variability �2 = 0.05, (c) and (d) are high variability �2 = 0.5. (a) and (c) are results at time t = 500. (b)
and (d) results from time t = 2000. Note the difference in z-axis scale between the top and bottom panels revealing that
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igher variability leads to slower population accumulations.

f many organisms (DeBach and Bartlett, 1964). Explicit math-
matical models can thus provide a useful guide to managing
nvasions, although additional practical considerations, such
s collecting or rearing of organisms, may influence such deci-
ions.

A result that is less obvious without our model, however,
s how dramatic an effect spatial structure has on invasion
isk. If arrivals occur at high enough frequency and mag-
itude, then eventually the Allee and invasion thresholds
ill be exceeded, but only if arrivals occur close together

n space. This is because the Allee effect prevents invasions
rom occurring unless the population is pushed over the Allee
hreshold in a large enough area, specifically one with radius
reater than Rcrit. Immigrants must arrive in close spatial
nd temporal proximity because that is the only way for
uch arrivals to overwhelm the effects of local population
ecline due to diffusion and negative population growth. In

ther words, low spatial dispersion increases the strength
f the rescue effect (Brown and Kodrick-Brown, 1977). Con-
ideration of spatial structure thus makes clear that the
ocal frequency of introductions is more relevant than the
global frequency, and shows that increases in spatial dis-
persion can dramatically reduce invasion risks. Our results
also show that the location of releases relative to bound-
aries can have large effects on invasion times. This effect
arises through an interaction between diffusion and reflect-
ing boundaries, which causes densities in corner releases to
be four times what they are in center releases, and densi-
ties in edge releases to be twice what they are in center
releases (Rohlf and Schnell, 1971). Reflection of individuals
away from boundaries and back toward the population center
thus leads to faster invasion times because of reduced spatial
dispersion.

These effects suggest a strategy of practical importance for
reducing invasion risk from ballast-water discharge. Ballast-
water discharges that take place in harbors correspond to
releases that occur close to boundaries and close together
in space, whereas discharges that take place in open water

correspond to releases that occur far from boundaries, and
potentially far apart in space. The strong reductions in inva-
sion risk that occur in our model as distances from the
boundaries increase and as spatial dispersion increases sug-
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Fig. 8 – Comparison of changes in population density with time for the two levels of variability around (x̄, ȳ) near a
reflecting boundary. (a) and (b) are low variability �2 = 0.05, (c) and (d) are high variability �2 = 0.5. (a) and (c) results at time

es in
t = 500. (b) and (d) results from time t = 2000. Note differenc

gest a clear policy for reducing this risk. Specifically, each
discharge event should take place as far as possible from
harbors and as far as possible from other discharge events.
In fact, there is strong empirical evidence that plankton
aggregate in harbors (McNeill et al., 1992; Floerl and Inglis,
2003), suggesting that the effects seen in our models likely
occur in nature as well. Indeed, the importance of bound-
aries in our model may partially explain why regions like
the Great Lakes of North America, with their many commer-
cial harbors, are hotbeds of invasion (Ricciardi and MacIsaac,
2000; Vanderploeg et al., 2001). We emphasize, however,
that similar effects may occur in terrestrial systems, in
which many species are reluctant to cross habitat bound-
aries (Stamps et al., 1987; Haas, 1995; Ries and Debinski,
2001).

The strategy of reducing invasion risk by dispersing intro-
ductions relies on the assumption that Allee effects are
important for invading species. Although undoubtedly there

are many organisms for which Allee effects are of minor
importance, the literature supports the notion that increased
dispersion leads to reduced invasion risks. For example, some
bird introductions in New Zealand failed despite numerous
z-axis scale.

introductions, at least partly because birds were introduced
in widely dispersed locations (Veltman et al., 1996). If Allee
effects are unimportant for a particular invader, however,
our proposed strategy of increasing spatial dispersion might
instead increase the area within which the invasion occurs
(Moody and Mack, 1988; Fagan et al., 2002). Evaluating inva-
sion risk under such circumstances would obviously require a
different model.

Perhaps the most unexpected result from our analy-
sis is the repeated appearance of saturating effects in our
approximations and simulations. Eq. (9) revealed that as the
combination a�, the threshold level and the parameter affect-
ing introduction sizes respectively, approaches 0, the expected
time required to cross the threshold approaches the constant,
(1/�). Because Eq. (9) assumes � is small in the first place, this
is reassuring, because it means that the expected time will be
large, a very reasonable expectation for processes involving
very small shocks. More generally, however, it is an instance

of one element of the process being at an extreme and the
system subsequently becoming insensitive to it. This general
feature arose in two other contexts in our study. First, Fig. 6
a showed that as mean introduction size increases, the num-
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Fig. 9 – log10 isobars of average time to invasion with �2 = 0.5 except where noted otherwise. (a) Central release, (b) central
release with variance �2 = 0.05, (c) edge release and (d) corner release. Comparing (a) and (b) reveals that decreasing the
dispersion of a release scenario decreases the mean time to invasion E(T) so that (b) is quite similar to (c). This means that
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ecreasing dispersion around a center release yields contou
he pronounced decrease in E(TI) when releases occur near a

er of introductions required before the population exceeded
he threshold decreased at a decreasing rate. The maximum

ean introduction size we explored was (1/2) the threshold
nd so it is easy to see why in this case the expected number
f introductions should approach 1, because on average, the
rst introduction will already exceed the threshold. Saturat-

ng effects appeared in our results again in the fully spatial
rocess, and again they appeared at extreme values of the
arameters governing the process. Specifically, when intro-
uctions are on average very infrequent, but large, increasing
he mean size of the introductions has little effect on the
ltimate time to invade. Conversely, when introductions are

nstead extremely small, but quite frequent, increasing the
ate of introductions has little effect (see Fig. 9d). This sug-
ests that if one component of the process can be maintained
t a low level, then there may be latitude in the level of the
thers. Thus, the recommendations that emerge from our
nalysis inform us about how to reduce risk, but also reveal
hat attempting to reduce risk is a realistic goal because strict
ontrol of a single element of the process, such as local fre-

uency, may be sufficient.

In conclusion, although invasion processes and manage-
ent strategies are generally more complex than can be

escribed easily by any single model (Smith et al., 1999;
milar to an edge release with higher dispersion. (d) shows
ner.

Endresen, et al.; Marchetti et al., 2004), our model neverthe-
less represents an important first step towards understanding
the effects of repeated introductions in a spatial context.
Indeed, this model can be built upon to also consider the
effects of evolution in the invader’s original community (Reid
and Orlova, 2002), niche opportunities in the new commu-
nity (Shea and Chesson, 2002), release from native enemy
complexes (Williamson and Fitter, 1996; Clay, 2003)(but see
Maron and Vilà, 2001), and other species interactions (Mitchell
and Power, 2003). There is also good evidence that repeated
introduction failures may finally become successful once
adaptation to the new environment occurs (Lee and Remfert,
2003). In such cases, repeated introductions may instead
reduce invasion risks, by reducing fitness in the new environ-
ment through gene flow. Also, in addition to diffusion, physical
processes may lead to directional flow or “advection” (but see
Lewis and Kareiva, 1993). Here we have forsaken some of these
details to focus on features that may be controlled by man-
agers, or tested in natural invasion processes. Nevertheless, it
seems likely that the qualitative effects of frequency, magni-

tude, and location of immigration events in our model would
not change by very much if we incorporated additional details.
Our model may therefore serve as a useful guide for manage-
ment decisions. Moreover, including additional details does
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Fig. 10 – E(TI) vs. variance �2 around mean release location (x̄, ȳ). Low frequency-magnitude combinations (0.01–0.01, solid
hig
circles) intermediate combinations (0.15–0.15, asterisks) and

center, (b) at edge, or (c) in corner.

not always produce a more useful model. For example, we have
assumed that the environment is homogeneous, even though
boundaries in aquatic habitats often differ from habitat cen-
ters in temperature and insolation and in having wave action
and periodic dessication, any of which could alter population
growth rates and thus invasion times (Connell, 1961; Hunt and
Scheibling, 2001). Rouget and Richardson (2003) and Parker
(2000), however, have suggested that propagule pressure tends
to be reduced by such effects, whereas Frenot et al. (2001)’s
results, and several references in Mack et al. (2000), suggest
exactly the opposite. Adding the effects of physical variability
at the boundaries to our model would thus be premature.

Complete elimination of accidental species introductions
is impossible, but reducing the chance that such introduc-
tions will lead to successful invasions is surely worthwhile,
and according to our results, does not require unrealistic levels
of control on multiple facets of the process. Instead, avoiding
high risk scenarios, such as concentrating releases in corners,
and manipulating either local frequency through introduc-
tion dispersion, or magnitude, can dramatically reduce risk.
Indeed, the early stages of introductions present the best

opportunity for reducing the impact of invasions (Mack et
al., 2000; Marchetti et al., 2004), and for that reason most
management efforts have focused on controlling rather than
preventing invasions (Ashton et al., 1989). Ships will thus
h combinations (0.3–0.3, open circles). Releases were in (a)

continue to arrive in harbors of the North American Great
Lakes from the Ponto-Caspian region in Europe (Grigorovich
et al., 2002), and they will continue to accidentally carry
nonnative species (Smith et al., 1999; MacIsaac et al., 2002),
despite the risks (Mack et al., 2000). Given that ships arrive
on predictable schedules (Endresen, et al.), and at known
locations, however, our model should be useful for devis-
ing protocols that minimize invasion risks, through the
manipulation of the frequency, magnitude and dispersion
of introductions. Additionally, because of the generality of
our approach, straight-forward modifications to, and exten-
sions of, this framework can yield useful predictions in other
systems.
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