
of the culmen (0.1 mm)10. Measurements were averaged within species. Altogether, the
data set comprised 1,018 (17.8% of 5,712) species in 103 (97.2% of 106) suprageneric taxa
of passerine birds.

Two samples of tribe-to-family-level clades were analysed. The most inclusive
contained the 95 taxa for which I measured more than one species and could therefore
calculate morphological variance. The second sample (n ¼ 50) excluded clades restricted
to non-continental landmasses (primarily Australasia, New Zealand, Madagascar and the
Greater Antilles), as well as tribe-to-family-level clades for which I measured fewer species
than one-third the number of genera or one-tenth the number of species.

In a further analysis, I extended the range of clade age by including estimates of
morphological variance within 108 genera having five or more species and for which I had
measured more than 20% of all species. Genera were assigned a relative age of
DT 50H ¼ 3.2 8C (the median relative age of nodes within subtribes)24. These were
combined with well-sampled tribe-to-family-level clades.

Sympatry within small clades
I used distribution maps in field guides and handbooks to estimate by eye the approximate
degree of sympatry among the species in clades having fewer than ten species (see
Supplementary Table 2). For each clade, the sympatry index is the proportion of species
(0–1) having greater than <50% overlap in their geographic range with one or more other
species in the clade, hence having the potential for interacting locally.

Analyses
The eight morphological values were log10-transformed to make the distribution of
variation in each of the measurements dimensionless, approximately normal within the
sample of species and unrelated to the mean value of the measurement. Over all species,
standard deviations of the log-transformed measurements varied between 0.144 and 0.195
(equivalent to factors of 1.39 and 1.57) and thus large and small measurements
contributed comparably to distance between species in morphological space. Log-
transformed measurements were subjected to a principal components (PC) analysis based
on the covariance matrix, to reduce the dimensionality of the data and obtain uncorrelated
axes of morphological variation. Using the covariance matrix preserves the original
euclidean distances between species26.

The first PC axis incorporated 75% of the variance in morphology and the first three
axes incorporated 91%. The resulting eight PC scores for each species were then used to
estimate the variance on each of the PC axes for each tribe-to-family-level clade. The
estimate of the variance is unbiased with respect to sample size1. Among 95 clades, the
morphological standard deviation was phylogenetically independent according to
Abouheif ’s test25 for PC1 (P ¼ 0.55) and PC4 (P ¼ 0.17).

To test the hypothesis that morphological diversification is a function of number of
species, time or both, I used multiple regression to determine the relationship between
morphological variance on each of the PC axes and the logarithm of species number and
relative age of each clade. Each of the variables was log-transformed to make the deviations
of morphological variance about the regression uniform and to test the linearity of the
relationship (slope ¼ 1).

I conducted nested analyses of variance to examine the distribution of variation among
species within genera, genera within tribe-to-family-level clades, and clades within
passerines. The expected morphological variation depending on a direct relationship to
the logarithm of species was calculated as follows: the logarithm of the number of smaller
taxa within each larger taxon at each level in the hierarchy of analysis (that is, 106 clades
within passerines, 10.95 genera per clade and 4.92 species per genus).

All analyses were performed using the Statistical Analysis System (SAS Institute, Cary,
North Carolina).
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The economic damage caused by episodic outbreaks of forest-
defoliating insects has spurred much research1, yet why such
outbreaks occur remains unclear2. Theoretical biologists argue
that outbreaks are driven by specialist pathogens or parasitoids,
because host–pathogen and host–parasitoid models show large-
amplitude, long-period cycles resembling time series of out-
breaks3,4. Field biologists counter that outbreaks occur when
generalist predators fail, because predation in low-density defo-
liator populations is usually high enough to prevent outbreaks5–8.
Neither explanation is sufficient, however, because the time
between outbreaks in the data is far more variable than in
host–pathogen and host–parasitoid models1,2, and far shorter
than in generalist-predator models9–11. Here we show that insect
outbreaks can be explained by a model that includes both a
generalist predator and a specialist pathogen. In this host–
pathogen–predator model, stochasticity causes defoliator den-
sities to fluctuate erratically between an equilibrium maintained
by the predator, and cycles driven by the pathogen12,13. Outbreaks
in this model occur at long but irregular intervals, matching the
data. Our results suggest that explanations of insect outbreaks
must go beyond classical models to consider interactions among
multiple species.

The host–pathogen model that we begin with describes the
effects of a specialist pathogen on the population dynamics of a
forest defoliator. Host-specific pathogens of defoliators are often
baculoviruses, which cause fatal diseases transmitted when larvae
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consume foliage contaminated with infectious cadavers14. Although
baculoviruses infect only larvae, multiple rounds of transmission
within a generation can lead to high infection rates, and so
epidemics are often severe in high-density defoliator popu-
lations1,15,16. Infected larvae are converted into infectious cadavers,
and pathogens are reintroduced into defoliator populations the
following year when hatchlings encounter infectious particles from
the previous year17. Previous work has shown that these dynamics
can be accurately predicted by a standard epidemic model, modified
to allow for variability in susceptibility among hosts18. The fraction
of infected hosts, I, in such a model can be closely approximated by

the following implicit expression, derived by assuming that the
epidemic proceeds until no further infections occur19:

12 IðNt ;ZtÞ ¼ 1þ
�n

mk
ðNtIðNt ;ZtÞ þ rZtÞ

� �2k

ð1Þ

Here Nt and Z t are host and pathogen densities in generation t, m
is the rate at which cadavers lose infectiousness, and r is the
susceptibility of hatchlings relative to later-stage larvae. To allow
for variability in susceptibility among larvae, transmission rates in
the model follow a gamma distribution with average transmission
�n and inverse squared coefficient of variation k. Because most
outbreaking defoliators have only one generation per year20,
generations are discrete. Between model generations, surviving
defoliators lay eggs, and virus particles must survive in the environ-
ment until new host larvae hatch. The host–pathogen model is
therefore

Ntþ1 ¼ lNtð12 IðNt ;ZtÞÞ ð2Þ

Ztþ1 ¼ fNtIðNt ;ZtÞ ð3Þ

Here l is net defoliator fecundity, f is pathogen over-winter survival,
and I is calculated using equation (1). For realistic parameter values,
this model shows long-period, large-amplitude cycles in defoliator
densities19. The period and amplitude of these cycles are similar to
those seen in time series for many outbreaking insects19, except that
the cycle period is much more regular in the model than in the data.
To see whether this discrepancy could be explained through the
addition of stochasticity, we multiplied the right-hand side of
equation (2) by a log-normally distributed random variable 1t ,
with median 1. The model cycles, however, are so robust that
stochasticity has only a modest effect (Fig. 1a).

We therefore modified the model to allow for a generalist
predator, because low-density defoliator populations often experi-
ence severe mortality from generalists such as birds7, spiders5, small
mammals6 or generalist parasitoids8,21. Generalists by definition rely
on multiple resources, and so, in contrast to specialists, their
densities respond weakly or not at all to changes in prey density.
A generalist’s attack rate can nevertheless respond to density, if, for
example, the generalist switches among prey items according to the
relative availability of each item22. Allowing for such behaviour

Figure 1 Comparison of model output with data for an outbreaking insect. a, Host–

pathogen model, equations (1)–(3). b, Gypsy moth defoliation in New Hampshire, USA.

c, Combined model, equations (1), (4) and (5). Parameter values are in the Methods, with

the addition that the standard deviation of loge of the forcing term 1t is 0.5. Model output

is scaled as described in the Methods. Note that the data give areas defoliated, whereas

the models give densities, so in comparing models with data we focus on the time

between outbreaks rather than on outbreak amplitudes.

Figure 2 Graphical representation of the combined model’s equilibria. The dark line is the

defoliator’s quasi-equilibrium population growth in the absence of the predator, and

the light line is the relative reduction in the defoliator growth rate due to the predator.

Circled intersections are equilibria.
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produces the model:

Ntþ1 ¼ lNtð12 IðNt ;ZtÞÞ 12
2abNt

b2 þN2
t

� �
ð4Þ

Ztþ1 ¼ fNtIðNt ;ZtÞ ð5Þ

Here the fraction of defoliators killed by the predator is
2abNt=ðb

2 þN2
t Þ; where a is the maximum fraction killed, and b

is the defoliator density at which the fraction killed is maximized.
Note that the fraction killed by the predator rises rapidly with
increasing prey density as the predator specializes on the newly
abundant prey. At high densities, however, the predator is over-
whelmed, and the attack rate levels off. The reduction in the
defoliator’s population growth rate due to the predator is therefore
maximized at an intermediate density (Fig. 2). Generalist predators
usually have little impact at high density, but often impose density-
dependent regulation on low-density defoliator populations5–8,21,
consistent with this model.

The addition of the generalist predator leads to dynamics that are
much more complex than the dynamics of the host–pathogen
model. This dynamical complexity arises in part because the
combined model can have multiple equilibria. To find these equili-
bria, we consider a quasi-equilibrium11 at which pathogen density
instantaneously adjusts to host density. At this quasi-equilibrium,
we can calculate the defoliator’s population growth rate as a
function of defoliator density alone (Fig. 2). Model equilibria
then occur at densities for which the quasi-equilibrium population
growth rate in the absence of the predator is equal to the reduction
due to the predator (Fig. 2). The model can have multiple equilibria
because the reduction due to the predator reaches a maximum at an
intermediate density.

Our results hold for a wide range of parameter values (see
Supplementary Information), but to describe the model’s dynamics
in more detail, we use values calculated for the gypsy moth
(Lymantria dispar) in North America (for data sources see the
Methods). For these values, the combined model has a high-density
equilibrium at which the defoliator is controlled by the pathogen
and the predator is relatively unimportant, much as in the host–
pathogen model (Fig. 2). In contrast to the host–pathogen model,
however, there is also a low-density equilibrium at which these roles
are reversed, so that the predator controls the defoliator and the
pathogen is relatively unimportant. This predator-maintained
equilibrium is stable, but only locally, and the equilibrium coexists
with two attractors associated with the high-density equilibrium
(Fig. 3a). The long-term model dynamics therefore depend on the
initial densities of defoliators and pathogens; moreover, many initial
conditions lead to complex transient dynamics that can last many
generations12 (Fig. 3b). The occurrence of multiple attractors and
long transients in turn means that adding a small amount of
stochasticity—by multiplying the right-hand side of equation (4)
by the log-normal random variable 1t —causes trajectories to move
unpredictably among attractors13 (Fig. 3c). For slightly different
parameter values the low-density equilibrium becomes unstable
and the system exhibits deterministic chaos. These chaotic
dynamics are qualitatively similar to the stochastically induced
complex dynamics shown in Fig. 3c.

This dynamical complexity is important because it can help to
explain the high levels of variability in outbreak interval seen in

Figure 3 Phase portraits of the combined model, with time proceeding anticlockwise.

a, Deterministic attractors. The ellipse is a quasi-periodic attractor and the small circles

are a phase-locked limit cycle. Source, sink and saddle-point equilibria are depicted by an

open square, a closed square and a cross, respectively. b, Short-term dynamics for many

initial conditions. We iterated the model for 250 generations, discarded the first 150

generations, plotted values for the remaining generations12, and repeated for initial N t

from 0.001 to 500 and initial Z t from 0.01 to 10,000, multiplying by 1.4 at each step.

c, Long-term dynamics with stochasticity. The standard deviation of the loge of the forcing

term is 0.05. Note that, unlike in b, densities never settle on a single attractor.

Table 1 Analysis of time between outbreaks for some forest-defoliating insects

Species Location Average
period

(yr)

Coefficient
of variation
of period

.............................................................................................................................................................................

Bupalus piniarius28 Germany 9.8 0.44
Epirrita autumnata29 Finland 9.5 0.26
Lymantria dispar27 Maine, USA 9.3 0.19

Massachusetts, USA 10.5 0.59
New Hampshire, USA 8.1 0.37
Vermont, USA 10.0 0.67

Orgyia pseudotsugata16 British Columbia, Canada 9.3 0.22
Washington, USA 13.0 0.62
N Idaho and NE Oregon, USA 9.0 0.16
SW Idaho, USA 10.8 0.30

Quadricalcarifera punctatella30 Japan 14.6 0.43
.............................................................................................................................................................................
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most (but not all2) long-term defoliator time series (Fig. 1, Table 1).
Direct comparison of model output with data is problematic,
however, because the model is highly sensitive to initial conditions,
and we do not have even crude estimates of the starting densities for
any defoliator. One solution is to compare statistical moments of the
model output with statistical moments of the data23, and so we
compare the average and the coefficient of variation of the time
between outbreaks in the model with those in the data. Figure 4
shows that the combined model yields long average times between
outbreaks, and high levels of variability in the time between out-
breaks. Although confidence intervals are wide, the mean and the
coefficient of variation of the time between outbreaks in the
combined model are at least consistent with most of the data. In
contrast, although the host–pathogen model—equations (1)–(3)—
also shows a long average time between outbreaks, its cycles are very
robust, and so achieving similar levels of variability in that model
requires very high levels of stochasticity.

Because of the importance of weather in defoliator population
dynamics2, we have assumed that the major source of stochasticity is
random fluctuations in parameter values caused by extrinsic events,
so-called ‘environmental stochasticity’. Although ‘demographic

stochasticity’, the chance events that befall small populations,
could conceivably be important in low-density defoliator popu-
lations, most such populations are of large spatial extent, and so we
suspect that absolute numbers of most defoliators generally do not
fall low enough for demographic stochasticity to be of great
importance. A related issue is that forest defoliator populations
tend to be synchronized over large areas2, but for some chaotic
ecological models, the addition of spatial structure can lead to
asynchrony among subpopulations24. When we add spatial struc-
ture to our model, however, we still see high levels of synchrony
among subpopulations (see Supplementary Information). Under-
standing why our model gives spatial synchrony when other models
do not requires additional research, but we suspect that an import-
ant part of the explanation is that the long time between outbreaks
in our model makes it more difficult for subpopulations to get out
of phase with one another. Our results are similarly robust to
changes in the specialist natural enemy. If we instead begin with a
host–parasitoid model, adding a generalist predator again gives
multiple equilibria, and complex dynamics that arise in response to
stochasticity (see Supplementary Information).

Our results show that the addition of a generalist predator to a
classical host–pathogen model can create a stable, low-density
equilibrium, and that interactions between this equilibrium and
limit cycles induced by the pathogen lead to stochastically induced
complex dynamics, and thus high variability in the time between
insect outbreaks. These dynamics differ not only from those of
classical host–pathogen and host–parasitoid models, but also from
those of classical generalist-predator models. Although classical
generalist-predator models can also have multiple equilibria9–11,
they assume that high-density defoliator populations are kept in
check by competition for resources. Outbreaks in these models are
separated by decades of low, stable defoliator densities, and so
biologists have assumed that outbreaks will only occur when
generalist predators fail because of weather or other stochastic
factors1,5–8. In contrast, because we realistically assume that high-
density populations crash owing to a specialist pathogen, the upper
equilibrium in our model shows high-amplitude cycles. The stabi-
lizing effect of the generalist predator in our model is therefore
much smaller than in classical generalist-predator models. Our
work suggests that two-species models are insufficient for under-
standing outbreaks, whether in insects or in other outbreaking
animal taxa8, and that classical theories of outbreaks must be
extended to consider interactions among multiple species. More-
over, models with multiple equilibria are generally used only to
describe catastrophic shifts in ecosystems25. Our work suggests that
an additional important effect of multiple equilibria is the creation
of complex dynamics. A

Methods
To reduce the number of parameters, we rewrite the model equations (1), (4) and (5) using
the non-dimensionalized host and pathogen densities N̂t ; mNt= �n and Ẑt ; mZt= �n

(ref. 19). This gives the rescaled equations

12 IðNt ;Zt Þ ¼ 1þ
1

k
ðNt IðNt ;Zt ÞþZt Þ

� �2k

ð6Þ

Ntþ1 ¼ lNt ð12 IðNt ;Zt ÞÞ 12
2ab̂Nt

b̂2 þN2
t

 !
ð7Þ

Ztþ1 ¼ fNt IðNt ;Zt Þ ð8Þ

where b̂ is the ratio of the density at maximum predation b to the epidemic threshold
Ne ; m= �n; while f is the between-season impact of the pathogen. At the quasi-
equilibrium, pathogen density adjusts to its equilibrium value instantaneously: that is, we
set pathogen density Zt to its equilibrium value �Z ¼ fNt IðNt ; �ZÞ: This allows us to
eliminate Z t from equation (6), so that equilibria occur at the intersections of the
functions f ðNt Þ; lð12 IðNt ÞÞ and gðNt Þ; 1=½12 2ab̂Nt=ðb̂

2 þN2
t Þ�:

Our estimates of the transmission parameters �n; k and m are averages from field
experiments with the gypsy moth baculovirus18. Studies of low-density gypsy moth
populations permit estimation of the reproductive rate, l, independently of density-
dependent sources of mortality6, and provide an estimate of the equilibrium density
during non-outbreak years. Although this is not quite the same as b, the density at

Figure 4 Effects of stochasticity on time between outbreaks. a, Average time between

outbreaks. b, Coefficient of variation of time between outbreaks. We used the models to

generate 2,000 realizations of 134 generations each, the approximate number of

generations for which the gypsy moth has been resident in North America. We then

calculated the average and the coefficient of variation of the time between outbreaks for

the final 65 generations, the length of the gypsy moth time series used in Table 1. Initial

densities of hosts and pathogens were drawn randomly from a uniform distribution

between 0.01 and 100. Lines depict 95th centiles of each statistic. Red lines are for the

combined model equations (1), (4) and (5). Blue lines are for the host–pathogen model

equations (1)–(3). Dotted lines indicate data for the gypsy moth (Table 1).
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maximum predation, the two densities are close relative to the uncertainty in our
estimates. These calculations give the following values: l ¼ 74.6; k ¼ 1.06; b̂ ¼ 0:14:

Estimates of predation rates in gypsy moth populations often exceed 99% (ref. 21),
which for our parameter values gives deterministic chaos in the combined model in the
absence of stochasticity. Because these experimental estimates may be slightly inflated
relative to predation rates in natural populations6, in the figures we use the slightly lower
value of a ¼ 0.967. For a ¼ 0.967 and f ¼ 20, the model has three equilibria, with the
lowest one stable (the intermediate-density equilibrium is always unstable), usefully
illustrating the origins of complex dynamics in our model. In fact, as we demonstrate in
the Supplementary Information, our results hold for a wide range of parameter values.
We estimated the pathogen over-winter survival parameter, f, by first estimating the
other parameters, and then adjusting f until the amplitude of density fluctuations in
each model matched estimates of the amplitude of density fluctuations derived from
the literature26 (note that the data used to estimate f are densities, and are thus
unrelated to the areas defoliated in Figs 1 and 4). Deriving an estimate of the density
amplitude from the literature requires that we make some assumption about the
detection threshold, the lowest density that can be detected. For detection thresholds of
1–2 egg masses per hectare, our amplitude estimates range from 3.38 to 3.68 orders of
magnitude. In this range of amplitude estimates, the inherent stochasticity of the
combined model makes it difficult to estimate f with more than one significant digit.
Given these uncertainties, we take 3.5 orders of magnitude as our estimate of the
observed amplitude, which gives best-fitting values f ¼ 60 for the combined model and
f ¼ 100 for the host–pathogen model. In Fig. 3, however, we use f ¼ 20 to illustrate
the origins of complex dynamics.

In calculating the statistics in Table 1, we restricted ourselves to time series with at least
five outbreaks, to reduce the uncertainty in our estimates of the coefficient of variation of
the time between outbreaks. Also, to illustrate irregularity in the inter-outbreak period, we
used only species for which the coefficient of variation of the time between outbreaks was
at least 0.15. In the case of the gypsy moth (Lymantria dispar) and the Douglas-fir tussock
moth (Orgyia pseudotsugata) the data are spatially referenced. Because the model assumes
that populations are well-mixed—so that dispersal does not limit species interactions—for
the gypsy moth we used data for particular states, while for the tussock moth we used
outbreak regions as in the original source16. At these scales, populations are nearly
synchronous27. Data were periods of outbreaks, except for the following. Lymantria dispar
data were acres defoliated, and outbreaks were defined as periods in which the area
defoliated was more than 1,000 acres, a common definition of an outbreak for defoliation
data. Bupalus piniarius data were densities, and outbreaks were defined as periods during
which the insect’s density was greater than its mean density.
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During synapse formation, specialized subcellular structures
develop at synaptic junctions in a tightly regulated fashion.
Cross-signalling initiated by ephrins, Wnts and transforming
growth factor-b family members between presynaptic and post-
synaptic termini are proposed to govern synapse formation1–3. It
is not well understood how multiple signals are integrated and
regulated by developing synaptic termini to control synaptic
differentiation. Here we report the identification of FSN-1, a
novel F-box protein that is required in presynaptic neurons for
the restriction and/or maturation of synapses in Caenorhabditis
elegans. Many F-box proteins are target recognition subunits of
SCF (Skp, Cullin, F-box) ubiquitin-ligase complexes4–7. fsn-1
functions in the same pathway as rpm-1, a gene encoding a
large protein with RING finger domains8,9. FSN-1 physically
associates with RPM-1 and the C. elegans homologues of SKP1
and Cullin to form a new type of SCF complex at presynaptic
periactive zones. We provide evidence that T10H9.2, which
encodes the C. elegans receptor tyrosine kinase ALK (anaplastic
lymphoma kinase10), may be a target or a downstream effector
through which FSN-1 stabilizes synapse formation. This neuron-
specific, SCF-like complex therefore provides a localized signal to
attenuate presynaptic differentiation.

Drosophila and C. elegans provide genetic models for uncovering
conserved regulatory mechanisms for synapse differentiation11,12.
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