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abstract: Eco-evolutionary theory argues that population cycles in
consumer-resource interactions are partly driven by natural selection,
such that changes in densities and changes in trait values are mutually
reinforcing. Evidence that the theory explains cycles in nature, how-
ever, is almost nonexistent. Experimental tests of model assumptions
are logistically impractical for most organisms, while for others, evi-
dence that population cycles occur in nature is lacking. For insect bac-
uloviruses in contrast, tests of model assumptions are straightforward,
and there is strong evidence that baculoviruses help drive population
cycles in many insects, including the gypsy moth that we study here.
We therefore used field experiments with the gypsy moth baculovi-
rus to test two key assumptions of eco-evolutionary models of host-
pathogen population cycles: that reduced host infection risk is heritable
and that it is costly. Our experiments confirm both assumptions, and
inserting parameters estimated from our data into eco-evolutionary
insect-outbreakmodels gives cycles closely resembling gypsymoth out-
break cycles in North America, whereas standard models predict unre-
alistic stable equilibria. Our work shows that eco-evolutionary models
are useful for explaining outbreaks of forest insect defoliators, while
widespread observations of intense selection on defoliators in nature
and of heritable and costly resistance in defoliators in the lab together
suggest that eco-evolutionary dynamics may play a general role in de-
foliator outbreaks.

Keywords: heritability, trade-offs, host-pathogen, complex dynamics,
eco-evolutionary.

Introduction

Eco-evolutionary theory has shown that natural selection
can help drive cycles in predator-prey and other consumer-
resource interactions, such that changes in trait values drive

changes in population densities and vice versa (Abrams 2000).
Recent work has focused in particular on the case for which
selection by the consumer drives selection on the resource
(Ellner 2013). In this case, increases in consumer attack rates
lead to both reductions in resource densities and selection-
driven increases in resource resistance, while decreases in
attack rates lead to both increases in resource densities and
selection-driven reductions in resistance because of a fit-
ness trade-off between resistance and fecundity. In eco-
evolutionary dynamics, changes in population densities and
changes in trait values are thus mutually reinforcing.
Eco-evolutionary cycles occur in predator-prey models

(Abrams and Matsuda 1997; Doebeli 1997; Ellner et al.
2011; Schreiber et al. 2011), host-parasitoid models (Sasaki
andGodfray 1999), and host-pathogenmodels (Dieckmann
2002; Elderd et al. 2008), suggesting that eco-evolutionary
cycles should be widespread in nature. Moreover, labora-
tory microcosms have provided conclusive evidence of eco-
evolutionary predator-prey cycles in real consumer-resource
interactions (Fussmann et al. 2000; Yoshida et al. 2003). Field
tests of the theory, however, are almost nonexistent (Abrams
2000), which is important because conditions in nature are
often very different from conditions in the lab. It is thus un-
clearwhether eco-evolutionary consumer-resource cycles oc-
cur in nature.
We therefore tested eco-evolutionary theory using field

data for the gypsy moth (Lymantria dispar) and its baculo-
virus pathogen. Insect-baculovirus interactionsprovideuse-
ful systems for testing models of host-pathogen interactions
because they can be used in field experiments designed to
estimate overall infection risk (Elderd 2013), which in eco-
evolutionary models is equivalent to host resistance (Dieck-
mann 2002). Previous studies of the heritability and costs of
resistance—whether in insects (Watanabe 1987; Boots and
Begon 1993; Cory andMyers 2009) or in other hosts (Altizer
et al. 2003)—have in contrast relied mostly on laboratory
experiments in which all hosts are forced to be exposed to
the pathogen, so that the experiments measure infection
risk given exposure rather than overall infection risk. Even
if exposure risk is allowed to vary, host behavior in the lab-
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oratory may be artificially constrained in a way that sub-
stantially alters overall risk (Eakin et al. 2015). In insect-
baculovirus interactions, however, it is possible to carry out
field experiments that allow for natural variation in host
behavior, leading to estimates of overall infection risk that
match those estimated from epizootics in nature (Dwyer
et al. 1997). In the first step in our research, we therefore used
field experiments to test the assumptions of eco-evolutionary
models that resistance is heritable and costly.

Because our experiments supported the model assump-
tions, in the second step in our research, we tested the model
prediction that natural selection helps drive population
cycles. In a few previous studies, the heritability of overall
infection risk has at least been measured in the laboratory
or the greenhouse (Henter and Via 1995; Herzog et al.
2007; Zbinden et al. 2008; Auld et al. 2013, 2014), but these
experiments have used hosts for which there is no evidence
of population cycles in nature. For the gypsy moth and other
defoliating insects, however, the economic damage imposed
by outbreaks has driven the collection of extensive data sets
documenting population cycles (Liebhold and Kamata 2000;
Johnson et al. 2005). Experimental manipulation of such cy-
cles is impractical, because defoliator outbreak cycles occur
over timescales of decades and spatial scales of thousands
of square kilometers (Liebhold and Kamata 2000), but the
data nevertheless allow us to indirectly test the predictions
of our models. We thus tested whether our data and our
models are consistent with gypsy moth cycles in nature by
comparing the predictions of models parameterized from
our experimental data to observational data on gypsy moth
population cycles.

Previous efforts to explain gypsy moth population cycles
have met with limited success. Classical insect-pathogen
models require variability in host infection risk to prevent
pathogen extinction, but realistically high variability causes
the models to produce a stable equilibrium instead of cycles
(Dwyer et al. 2000). Extending classical models to include
effects of induced plant defenses on disease transmission
produces models that again show realistic cycles, but these
cycles require particular spatial configurations of tree spe-
cies (Elderd et al. 2013). Host-pathogen/induced-defense
models therefore cannot explain observations of outbreaks
in some forest types (Haynes et al. 2009b).

Adding heritable variation in resistance to classical insect
outbreak models in contrast leads to realistic cycles for re-
alistic variability in host infection risk, irrespective of for-
est type (Elderd et al. 2008). Moreover, baculovirus mortal-
ity is often high during gypsy moth outbreaks (Woods and
Elkinton 1987), implying that selection pressure is high,
while resistance in the lab is heritable and costly (Páez et al.
2015). Eco-evolutionarymodelsmay therefore provide a bet-
ter explanation for gypsy moth outbreak cycles than existing
models.

Previous eco-evolutionary insect outbreak models never-
theless made the unrealistic but mathematically convenient
assumption that heritability is perfect (Elderd et al. 2008),
whereas in nature heritability is almost certainly !1. More-
over, reduced heritability is strongly stabilizing in predator-
prey models (Schreiber et al. 2011), so if the heritability of
resistance to the baculovirus is too low, cycles may not oc-
cur in themodels.Whether eco-evolutionary insect-outbreak
models can explain gypsy moth outbreak cycles is therefore
an open question.
Testing whether our experimental estimates of the heri-

tability and cost of infection risk are consistent with gypsy
moth population cycles therefore required that we extend
previous eco-evolutionary insect outbreak models to allow
for imperfect heritability. Because the predictions of the pa-
rameterized models match the data, we conclude that eco-
evolutionary consumer-resource cycles occur in nature, not
just in microcosms. Because the gypsy moth is a major pest
of hardwood forests in North America (Elkinton and Lieb-
hold 1990), and because the virus plays a role in gypsy moth
control (Podgwaite et al. 1993), our models may be prac-
tically useful for guiding gypsy moth management, as we
discuss.

Methods

Baculovirus Biology and Eco-Evolutionary
Models of Insect Outbreaks

In defoliating insects like the gypsy moth, baculovirus trans-
mission occurs when larvae accidentally consume foliage
contaminated with infectious occlusion bodies, microscopic
particles with a 10–20-nm radius that are released in large
numbers (106–109) from the cadavers of infected conspecif-
ics (Cory and Hoover 2006). In an occlusion body, DNA-
containing virions are enclosed in a polyhedral-shaped pro-
tein matrix, which dissolves in the alkaline conditions of the
insect midgut, freeing the virions so that they can infect the
insect’s tissues (Funk et al. 1997). Consumption of a large
enough dose leads to death, after which viral enzymes break
down the larval cuticle, releasing occlusion bodies into the
environment to complete the cycle of transmission (Elderd
2013). In high-density insect populations, multiple rounds of
transmission cause severe mortality, terminating outbreaks
(Moreau and Lucarotti 2007). The virus then overwinters by
contaminating the eggmasses produced by surviving insects,
and hatching larvae become infected as they chew their way
out of contaminated eggs the following spring (Murray and
Elkinton 1989).
Because gypsy moths have only one generation per year,

and because only larvae can become infected, there can be
only one epizootic per year (Fuller et al. 2012). To model
gypsy moth outbreaks, we therefore first constructed a
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continuous-time epizootic submodel, which we embedded
inside a discrete generation model of long-term population
dynamics and evolutionary change (Elderd et al. 2008). The
epizootic submodel thus uses the initial densities of hosts and
pathogen particles and the initial average infection risk (as
calculated by the long-term model) to calculate the fraction
of hosts that become infected. The fraction infected is in turn
used in the long-term model to update the number of hosts
and pathogen particles and the average host infection risk.
Although the model is constructed to describe gypsy moth–
baculovirus interactions, it is general enough to describemany
host-pathogen interactions for which hosts have discrete
generations.

The epizootic submodel is a susceptible-exposed-infected-
recovered (SEIR) model (Keeling and Rohani 2008), modi-
fied to allow for host variation in infection risk (Dwyer et al.
1997, 2002; Fuller et al. 2012):

dS
dt

p 2�nSP
S(t)
S(0)

� �V

, ð1Þ

dE1

dt
p �nSP

S(t)
s(0)

� �V

2mdE1, ð2Þ

dEj

dt
p mdEj21 2mdEj, j p 2, :::   m, ð3Þ

dP
dt

p mdEm 2 mP: ð4Þ

Here S and P are the densities of healthy hosts and pathogen-
infected cadavers, respectively, so that I for infected host in
the standard SEIR model is replaced by P for pathogen. Like
most host-pathogen models, this model is fundamentally
similar to Lotka-Volterra predator-prey models (Anderson
and May 1992), except that host reproduction is instead de-
scribed by the long-termmodel, as we will explain.

At field temperatures, gypsy moth larvae die an average
of 16 days after consuming an infectious dose (Fleming-
Davies et al. 2015), and so we allowed for a delay between in-
fection and death. To do this, we included multiple classes
of exposed but not yet infectious hosts Ej, which produces
a delay between infection and death that follows a gamma
distribution. To explain why multiple exposed classes pro-
duce a gamma-distributed delay, we observe that if all hosts
were in class j, then the dynamics of class j would follow
exponential decay dEj=dt p 2mdEj, implying that the time
spent in class j is exponentially distributed with mean 1=md.
The time between infection and death is then the sum of
m such exponentially distributed kill times, and a standard
result from probability theory states that the sum ofm expo-
nential random variables follows a gamma distribution, in
this case, with mean 1=d and coefficient of variation (CV)
1=m1=2 (Keeling and Rohani 2008).

Variation in infection risk modulates transmission through
the term �n[S(t)=S(0)]V , such that the initial mean transmis-
sion rate is �n and the squared CV of transmission rates is
V (Dwyer et al. 2000). Because S(t) ! S(0) for all t, higher
variation V thus reduces overall transmission. To explain
why this is so, we note that an increase inVwithout a change
in �n implies that there have been increases in the resistance
of some individuals—and reductions in the resistance of oth-
ers—in such a way that the mean does not change but over-
all variation increases. In this hypothetical situation, it is
possible to show that the increases in resistance that have oc-
curred in some individuals have bigger effects on the infec-
tion rate than do the decreases in resistance that have oc-
curred in others (Anderson and May 1992).
The SEIR equations (1)–(4) are then used to calculate the

fraction of hosts infected by the virus i(Nn,Zn,�nn) ≡ S(T)=
S(0), where T p 8 weeks is the length of the epizootic (Ful-
ler et al. 2012). The fraction infected is in turn used in the
long-term model to calculate the number of offspring pro-
duced by the surviving hosts, the number of infectious ca-
davers that survive the winter, and the change in infection
risk that results from natural selection (for the derivation,
see app. A). Because gypsymoths often experience highmor-
tality from generalist predators and parasitoids (Gould et al.
1990; Elkinton et al. 1996), we also include a term that de-
scribes the fraction of hosts that survive predation (Dwyer
et al. 2004):

Nn11 p re ϵnNn[12 i(Nn,Zn,�nn)] 12
2aqNn

q2 1 N2
n

� �

f11 s�nn[12 i(Nn,Zn,�nn)�Vg,
ð5Þ

Zn11 p fNni(Nn,Zn,�nn)1 gZn, ð6Þ

�nn11 p �nn[12 i(Nn,Zn,�nn)]
bV

f11 s�nn(bV 1 1)[12 i(Nn,Zn,�nn)]
bVg

11 s�nn[12 i(Nn,Zn,�nn)]
bV :

ð7Þ

Host density Nn11 is the product of baseline fecundity r, a
stochasticity term eϵn , host density in the preceding genera-
tion Nn, and the fraction surviving the epizootic 12 i(Nn,
Zn,�nn). The stochasticity parameter ϵn is a normal random
variate with mean 0 and standard deviation j, representing
the stochastic effects of weather (Williams et al. 1990). Gen-
eralist predation is represented by the term 12 2aqNn=
(q2 1 N2

n), which describes host survival as determined by
a type III functional response (Dwyer et al. 2004). To allow
for the cost of resistance, we assume that fecundity at low
host and pathogen densities increases linearly with increas-
ing infection risk �nn, according to 11 s�nn[12 i(Nn,Zn,�nn)].
Changes in host density are thus partly driven by balancing

(7)

(5)
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selection, such that higher average infection risk �nn leads to
increased mortality but also to increased fecundity. The fe-
cundity cost of resistance is reduced, however, when the in-
fection rate i(Nn,Zn,�nn) is high, which is more likely when
average infection risk is highorwhenhost andpathogenden-
sities are high. Increases in average infection risk or in host
and pathogen densities thus reduce the fecundity cost but
also increase host mortality.

Pathogen density Zn11 is equal to the density of infectious
cadavers produced in the preceding generation’s epizootic,
Nni(Nn,Zn,�nn), times the effective overwintering rate f. We
refer to f as the effective overwintering rate because it al-
lows for both pathogen survival and the higher susceptibility
of neonate larvae (Dwyer et al. 2000). Because neonates are
orders of magnitude more susceptible than later-stage lar-
vae, previous work has shown that f 1 1 (Fuller et al. 2012;
Fleming-Davies and Dwyer 2015). Longer-term pathogen
survival is represented by the cadaver density Zn times the
long-term pathogen survival rate g (Fuller et al. 2012).

Infection risk �nn11 is equal to the preceding generation’s
infection risk �nn times the fraction infected i(Nn,Zn,�nn),
so that higher virus mortality selects for reduced risk. The
cost of resistance in contrast selects for higher risk, because
fecundity at low densities increases linearly with increases
in previous-generation risk, 11 s�nn(bV 1 1)[12 i(Nn,Zn,
�nn)]

bV , an effect that is again reduced by high infection rates.
The symbol b represents the heritability of risk, so that bV is
the fraction of overall variation in risk that is due to additive
genetic factors, and high values of b strengthen the effects of
selection. Changes in infection risk are thus determined by
balancing selection, as in the case of host density, except that
in contrast to host density, the change in infection risk does
not depend on the baseline fecundity r.

Population cycles in this model then occur because of the
consumer-resource interaction between the host and the
pathogen and because of natural selection on infection risk
and fecundity (fig. 1). Low virus mortality drives increases
in the density of high-fecundity, high-infection-risk geno-
types, leading to increases in the density of the virus and
increases in the average infection risk, which in turn cause
virus epizootics that decimate the host population. Host
density is then low formultiple host generations not just be-
cause of the pathogen and the generalist predators but also
because the survivors of virus epizootics are more resistant
to the pathogen and therefore have low fecundity. Eventu-
ally, however, reductions in the density of the virus and in-
creases in the fecundity of the insect drive increases in the
density of the host, leading to a new outbreak. Natural se-
lection therefore combines with ecological factors to drive
outbreaks. Qualitatively similar behavior occurs in models
in which there is no generalist predator or in which the
pathogen is replaced by a parasitoid (see app. B, available
online).

Field Experiments to Estimate the Heritability
and Cost of Reduced Infection Risk

Our experiments were designed to test the two key assump-
tions of our eco-evolutionary model: that infection risk is
heritable and that there is a fecundity cost of reduced risk.
Previous work produced preliminary evidence that infec-
tion risk is heritable without estimating heritability andwith-
out showing that there is a cost of reduced risk (Elderd et al.
2008). In testing whether infection risk is heritable and costly,
we therefore also aimed to estimate the heritability parameter
b and the cost parameters r and s to determine whether the
valuesof theseparameters fall in theright range toproduce re-
alistic model outbreaks. To estimate b, we carried out a field
transmission experiment using half-sibling families, which
we created by taking advantage of the ability of male gypsy
moths to mate with two to three different females, given 24 h
of rest between matings (Páez et al. 2015). To estimate r and
s, we carried out a field transmission experiment using full-
sibling families, which we produced by mating individual
males to individual females.
We carried out our experiments in the field because over-

all infection risk depends on feeding behavior, which can-
not be easily allowed for in laboratory experiments (Dwyer
et al. 2005). Feeding behavior affects overall risk by deter-
mining exposure risk (Eakin et al. 2015), but overall risk
is also affected by risk given exposure, which is instead de-
termined by the insect’s immune system (Páez et al. 2015).
Moreover, in the lab, both feeding behavior and immune
system functioning show heritable variation that affects ex-
posure risk and infection risk given exposure, respectively
(Parker et al. 2011; Páez et al. 2015). By measuring overall
infection risk, we thus allowed for heritable variation in both
feeding behavior and immune system functioning. In pre-
vious work, inserting estimates of infection risk from this
type of experiment into the SEIR equations (1)–(4) produced
infection rates close to those seen innature (Dwyer et al. 1997,
2002), suggesting that our experimental protocol allows for
accurate estimation of infection risk.
Estimating the heritability of infection risk then required

that we decompose the variance in risk into additive genetic
variance and environmental variance (Falconer and Mackay
1996). Additive genetic variance can be estimated from the
variance across half-sibling groups,which is due to sire effects
Si, while environmental variance instead arises from mater-
nal effectsMj because of variability in egg provisioning (Diss
et al. 1996) or small-scale differences between rearing cups.
Also, for logistic reasons, larvae were not all deployed in the
field on the same day, and so environmental variance may
also arise from a start-day effect Dk.
Because infection risk is defined in equations (1)–(4) as

the transmission rate �n, we first expressed �n in terms of sire,
dam, and day effects:
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Figure 1: Single realization of the model equations (5)–(7). Top panel shows changes in host Nn (filled circles, black lines) and pathogen Zn

(open circles, gray lines) densities, while bottom panel shows changes in average infection risk �nn (filled circles, black lines) and in the fraction
infected i (open circles, gray lines). Here we use the median parameters calculated from our experimental data: heritability b p 0:129, baseline
fecundity r p 0:21, cost-scaling parameter s p 1:21, and total variation V p 2:97. The death rate of exposed hosts d p 1=16 per day and the
number of classes m p 27 are from Fleming-Davies et al. (2015). The generalist predation parameters a p 0:96 and w p 0:14 are from
Dwyer et al. (2004). The pathogen overwintering parameter f p 7:4 and the long-term survival parameter g p 0:3 are from Fuller et al.
(2012). Long-term survival g is on the high end of reasonable values, but variation in g has only modest effects (app. B, available online).



�n jkl p elog(n
*)1Sj1Mk1Dl : ð8Þ

Here n* is the baseline infection risk. A basic result from
quantitative genetic theory (Falconer andMackay1996) then
states that heritability can be expressed in terms of the sire
variance j2

S, the maternal variance j2
M , and the day variance

j2
D:

b p 4#
j2
S

(j2
S 1 j2

M 1 j2
D)
: ð9Þ

Estimating j2
S, j2

M , and j2
D then required that we relate in-

fection risk �njkl to a measurable quantity. To do this, we used
�njkl in the SEIR equations (1)–(4) to calculate the fraction in-
fected, as measured in our experiments. In practice, we first
simplified the SEIR equations, because in our experiments,
the mesh bags block enough sunlight that decay is 0 (Fuller
et al. 2012) and the exposure period is short enough (7 days)
that no new virus deaths occur. These two factors ensure
that the density of virus does not change during the exper-
iments, so that we can set dP=dt ≡ 0 in equations (1)–(4),
which in turn allows us to derive an expression for the frac-
tion infected i in terms of �njkl (Dwyer et al. 2000):

i p 12 [11 �njklVP(0)T]
21=V

: ð10Þ
Here P(0) is the density of virus-infected cadavers and T is
the length of time for which the experiment runs. Because
in our experimentswe varied the density of virus-infected ca-
davers, we were able to fit �njkl and V to our data, which made
it possible to estimate the effects of sire, dam, and day on in-
fection risk. To do this, we used a hierarchical Bayesian fit-
ting routine (see app. B), such that the sire, maternal, and
day effects were drawn from normal distributions with mean 0
and respective variances j2

S, j2
M , and j2

D. Once we had esti-
mates of j2

S, j2
M , and j2

D, we inserted them into equation (9)
to estimate the heritability b of infection risk. We also tested
more directly whether there was meaningful heritable varia-
tion by using Akaike information criterion (AIC) analysis to
choose between models that included sire, dam, and day ef-
fects in different combinations.

Inferences about transmission parameters are stronger
in experiments that include a range of virus densities (El-
derd et al. 2008), and so we used densities of 0, 25, 50, and
75 virus-infected cadavers per 40-leaf branch. Each branch
was fed on by roughly 20 uninfected larvae, a density that falls
within the range of gypsy moth densities observed at the start
of baculovirus epizootics (Woods and Elkinton 1987). After
larvae had fed freely on virus-contaminated foliage in the
field, we reared them in individual diet cups in the lab until
death or pupation. Infected larvae are usually easily recog-
nizable because the virus has caused them to disintegrate,
but in cases of uncertainty, we examined smears from dead
larvae under a lightmicroscope for the presence of occlusion
bodies, which are easily visible at#400 (Woods and Elkin-

ton 1987). Because we used an area in which gypsy moth
densities were very low, and because all eggswere surface steril-
ized in dilute formalin (Dwyer and Elkinton 1995), infection
rates on uninfected control foliage were low (heritability ex-
periment: 12=209 p 5:7%; cost experiment: 6=371 p 1:6%),
and so we do not consider controls further.
In our fitting routine, we assumed that the data are bino-

mially distributed, which is equivalent to assuming that in-
fection risk is independent across larvae within a branch,
but in practice there may be correlations in infection risk
between larvae that cause the observed variance to be higher
than the binomial variance (McCullagh andNelder 1989; see
app. B; note that this is a nonissue for our analyses of the
cost of resistance data, which instead rely on bootstrapping
to quantify uncertainty). A standard way to test for such ex-
trabinomial variation is to calculate the variance inflation
factor, the ratio of the observed variance to what the corre-
sponding binomial variance would be, given the sample size
(Burnham and Anderson 2002). Variance inflation factors
14 suggest that there is substantial model inadequacy, but
smaller values can instead be used to adjust the likelihood
score, leading to a quasi-likelihood AIC (QAIC). In our ex-
periments, we kept extrabinomial variation reasonably low
by ensuring that all uninfected larvae had reached the fourth
instar within 48 h of the beginning of the experiment (Elderd
et al. 2008; see app. B), leading to a variance inflation factor
of 2.27. We then divided the likelihood score of each model
by 2.27 before calculating AIC values, thus using QAIC scores
to choose the best model (Burnham and Anderson 2002).
In principle, sire, dam, and day effects could explain all

the variation in infection risk so that we could allow V →
0 in equation (10) (Dwyer et al. 2005), but there are also ef-
fects of small-scale spatial variation in virus density that do
not depend on factors that vary between host families (Eakin
et al. 2015). Because of this variation, allowing V → 0 in
equation (10) produced a model that gave a much worse fit
to the data, and we therefore instead assumed V 1 0.
To estimate the cost of reduced infection risk, we fit a

version of the fraction-infected equation (10) to the data
for each full-sibling group, and we regressed average female
pupal weight in each group on the average infection risk in
that group (Elderd et al. 2008). Because pupal weight is a
good predictor of egg number (Páez et al. 2015; r2 p 0:57),
a positive relationship between pupal weight and infection
risk indicates that there is a fecundity cost of reduced risk.
Becausewemeasured fecundity in termsofpupalweight,how-
ever, estimating the cost parameters r and s required that we
convert from pupal weight to egg number. We did this in
twosteps:first, byusingdata fromPáezet al. (2015) to convert
from pupal weight to egg mass weight, and second, by using
data from Dwyer and Elkinton (1995) to convert from egg
massweight to eggnumber.Anadditional consideration, how-
ever, is that the model requires an estimate of net fecundity,
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because early instars often die from starvation as they dis-
perse from egg masses laid on bark to foliage at branch tips.
To allow for such losses, we used data from Hunter and El-
kinton (2000), who measured early instar survival in exper-
imental gypsy moth populations. We then bootstrapped to
estimate the net uncertainty arising from the three conver-
sions (app. B).

Results

In the heritability experiment, infection rates and infection
risk varied strongly across half-sibling families (fig. 2A, 2B),
with 13% of the variation in risk explained by additive ge-
netic variation (b p 0:13). QAIC scores were vastly better
(lower) formodels with sire effects (table 1), while themodel
with sire and dam effects was the onlymodel with a substan-
tial QAIC weight, indicating that dam effects were also strong
but that day effects were weak. Because the models include
random effects, it is almost impossible to assess goodness
of fit through visual inspection of plots of the model predic-
tions and the data versus virus densities, as is usually done
with this kind of experiment (Elderd 2013), but in appen-
dix B, we use a plot of observed versus predicted infection
rates to demonstrate that the best model is quite accurate.
For heritability b, the 95% highest posterior density (HPD)
interval (the Bayesian equivalent of a 95% confidence inter-
val) was broad but excluded values below 5# 1024 (HPD p
0:0005, 0.51). Infection risk in the gypsy moth therefore has
low but nonzero heritability, confirming the first key as-
sumption of our eco-evolutionary model.

In the cost experiment, there was a noisy but positive re-
lationship between female pupal weight and infection risk
(fig. 2C), and the slope of the regression line was signifi-
cantly10, confirming that there is a cost of reduced risk (me-
dian intercept p 0:73, upper and lower 95th percentiles p
0:70, 0.80; median slope p 0:45, upper and lower 95th
percentiles p 0:09, 0.56; for a description of how we boot-
strapped the regression parameters to account for error in
both infection risk and pupal weight, see app. B). In this
regression, we included only survivors of virus exposure,
which may have led to an underestimate of the cost, because
of selection for low-risk/low-fecundity individuals within
full-sibling groups. We therefore carried out a second re-
gression (see app. B) in which we also included unexposed
larvae from the lab, but the resulting regression line had
identical slopes for exposed and unexposed individuals (in-
tercepts in contrast were different, probably because lab-
reared insects have artificially high growth (Páez et al. 2015);
thus, in estimating costs, we used weights for field-reared
insects. Irrespective of the analysis, our data show that fe-
male gypsy moths experience a fecundity cost of reduced in-
fection risk, confirming the second key assumption of our
eco-evolutionary model.

Because infection risk is heritable and costly, balancing
selection must inevitably play a role in determining infec-
tion risk in the gypsy moth. It does not follow, however,
that selection alters gypsy moth outbreak cycles, because
realistic cycles in our model do not occur for all parameter
values. To test whether our experimental parameters give
realistic cycles, we therefore simulated the model using the
experimental parameters to determine whether the param-
eterized model can reproduce data on gypsy moth out-
break cycles.
Because cyclic population dynamics are at least moder-

ately sensitive to initial densities, which are almost always
unknown, Kendall et al. (1999) argued that a useful way to
compare model cycles to data is by comparing periods and
amplitudes, which in the long run are insensitive to initial
conditions. Accordingly, when we inserted the median pa-
rameter values calculated from our experiments into our
model, the average cycle period was 7.4 years, and the aver-
age amplitude was 2.1 orders of magnitude (fig. 1), which
compares well with observed periods of 5–9 years (Johnson
et al. 2005) and observed amplitudes of 2–4 orders of mag-
nitude (Skaller 1985; Williams et al. 1990; Jones et al. 1998).
Moreover, variation in the parameter estimates has only
modest effects on model periods and amplitudes (fig. 3). Fi-
nally, the model predicts that average infection risk (fig. 1)
will fall in synchrony with falling population densities, a
prediction that was confirmed by previous experiments that
measured infection risk before and after a population crash
(Elderd et al. 2008). Observational and experimental data
thus support the model predictions, suggesting that natural
selection plays an important role in gypsy moth outbreaks.
We also used our models to address the general issue of

how heritability affects population stability. In continuous-
timeeco-evolutionarypredator-preymodels, stability ismore
likely when heritability is low (Schreiber et al. 2011), but in
our model, stability is more likely when heritability is in-
termediate (fig. 3). In both types of models, high heritability
causes such a rapid response to selection that risk undergoes
large-amplitude fluctuations, driving large-amplitude fluctu-
ations in densities. In our model, however, low heritability
causes a slow response to selection that exacerbates the de-
layed density dependence that drives cycles, and so low heri-
tability is mildly destabilizing instead of stabilizing. This de-
stabilizing effect of low heritability also occurs in a model in
which the pathogen is replaced by a parasitoid (see app. B),
but the effect almost disappears in a model in which the epi-
zootic continues until it has burned out as a result of low
densities of susceptible hosts (Dwyer et al. 2000; see app. B).
The lack of a destabilizing effect in the burnout model is

likely due to the less severe effects of delayed density depen-
dence in that model. That is, when the epizootic proceeds
to burnout, the pathogen responds more rapidly to density,
reducing the delay between increases in host density and
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increases in pathogen density, in turn reducing the period
and amplitude of outbreak cycles. Discrete generations nev-
ertheless also appear to play a role, in that stability in the
burnout model is at least slightly lower at low heritability.
We therefore conclude that the effects of heritability on sta-
bility are modulated by the severity of the delayed density
dependence, which in turn depends on the occurrence of
discrete generations.

A second general point is that our model does not appear
to have either the half-cycle lags (Yoshida et al. 2003) nor
the cryptic population cycles (Yoshida et al. 2007) that have
been observed in microcosm models. We have not been
able to prove this result, but for almost all the parameter
values in figure 3, the average lag was two generations or
less (99.6% of 96,981 parameter sets that did not cause host
or pathogen extinction), strongly suggesting that longer lags
do not occur. Meanwhile, in outbreak data on several dif-
ferent insects, baculovirus infection rates likewise peaked
shortly after host densities (Moreau and Lucarotti 2007),
confirming the model prediction.

A full understanding of why our model behaves differ-
ently from microcosm models is beyond the scope of our
work. We note, however, that half-cycle lags in microcosm
models are more likely when costs are low, whereas in our
model, reducing the cost-scaling parameter s had no effect
on the lag (for s p 0:2, the lower bound on the HPD: 94.8%
of 87,515 parameter sets had lags of two generations or less;
for s p 0:2: 91.3% of 13,387 parameter sets; note that reduc-
ing s tends to increase the probability of host and/or patho-
gen extinction; see app. B). The key difference between our
model and microcosm models therefore again appears to be
that our model assumes discrete host generations, whereas
microcosm models assume continuous reproduction (Hil-
tunen et al. 2014).

Discussion

In comparing the cycles in our models to cycles in North
American gypsy moth populations, it is important to point
out that Allstadt et al. (2013) showed that gypsy moth pop-

ulations in New England cycled from 1943 to 1965 and from
1978 to 1996, with periods of noncyclic dynamics at other
times (data points after 2009 were too few to permit testing,
but a 2016 outbreak in New England suggests that cycling
may have returned; G. Dwyer, personal observation). This
lack of cycling is not necessarily inconsistent with ourmodels,
however, because Allstadt et al. showed that the dynamics
seen in the New England data can be explained by a version
of theDwyer et al. (2004)model that includes stochastic fluc-
tuations in generalist-predator density. Given that ourmodel
is basically the Dwyer et al. model plus natural selection, it
seems likely that adding stochastic fluctuations in generalist-
predator density to our model would allow it to reproduce
the New England data, with the proviso that such a test is be-
yond the scope of our work.
Another important feature of Allstadt et al.’s work, how-

ever, is that they forced their version of the nonevolution-
ary Dwyer et al. model to show at least intermittent cycles,
by using values of host variation V that are now known to

Table 1: Quasi-likelihood Akaike information criterion (QAIC)
scores for transmission models

Model Parameters
No.

parameters DQAIC
QAIC
weight

1 n, V, sirei, damj, dayk 131 2.83 .06
2 n, V, damj, dayk 93 89.4 !1025

3 n, V, sirei, damj 124 0 .944
4 n, V, sirei 40 14.6 !1025

Note: Boldface indicates the best model, which allows for sire and dam
effects.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fe
cu

nd
ity

 c
os

t r

0.5−1
1.5

2
2.5

3
3.5

4
4.5−5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fe
cu

nd
ity

 c
os

t r

Heritability b

5.5−6
6.5

7
7.5

8
8.5
>9

Figure 3: Effects of variation in baseline fecundity r and heritability
b on the period and amplitude of outbreak cycles in the long-term
model (eqq. [5]–[7]). Here and in similar figures in appendix B (avail-
able online), each period and amplitude is an average over 25 realiza-
tions of the model. Remaining parameters are as in figure 1. Top panel
shows the average cycle amplitude in orders of magnitude, while bot-
tom panel shows the average period in years. White circle represents
our median estimates of r and b, with error bars indicating the inter-
quartile range. Because cycle periods are generally shorter and ampli-
tudes are generally lower at intermediate values of b, we conclude that
intermediate heritability is stabilizing.
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be unrealistically low (Elderd et al. 2008). As we have de-
scribed, realistic values of V eliminate cycles altogether in
nonevolutionary insect-outbreak models, leading instead
to a stable, point equilibrium. Given that Allstadt et al.’s ap-
proach has been followed in several other articles (Haynes
et al. 2009a; Bjørnstad et al. 2010; Walter et al. 2015), a con-
sideration of eco-evolutionary dynamicsmay have broad im-
plications for our understanding of gypsy moth dynamics.

In focusing on the effects of natural selection, we never-
theless neglected other mechanisms known to affect gypsy
moth outbreak cycles inNorthAmerica. First, since 1989, the
fungal pathogen Entomophaga maimaiga has often caused
high mortality in North American gypsy moth populations
when rainfall is high (Hajek 1999; Liebhold et al. 2013; Hajek
et al. 2015). Indeed, the advent of E. maimaigamay provide
an alternative explanation for the lack of outbreaks in New
England since 1996 (Allstadt et al. 2013).

Second, we assumed that baculovirus transmission is un-
affected byhost-plant foliage quality, butdefoliation-induced
increases in hydrolyzable tannins in oaks (Quercus spp.) can
greatly reduce variation in infection risk. Because of this ef-
fect, host-pathogen/induced-defensemodels can help explain
variability in outbreak periods across forest types (Elderd
et al. 2013). Although the models do not allow for outbreaks
in forest types with low frequencies of oaks, where outbreaks
have in fact been observed (Haynes et al. 2009b), and although
the models are sensitive to the degree of clumping of oaks
within the forest (Elderd et al. 2013), which has not beenmea-
sured, it nevertheless seems likely that induced defenses also
affect gypsy moth outbreaks.

Third, our models assume that the pathogen population
is monomorphic, but the gypsy moth virus is at least moder-
ately polymorphic and is also subject to trade-offs between
fitness components (Fleming-Davies et al. 2015). Indeed,nat-
ural selection on the pathogen is perhaps themost important
missing mechanism in our model, because it is most likely to
lead to changes in dynamics (Dieckmann 2002), but allow-
ing for pathogen evolution would require extensive experi-
ments to estimate how host trade-offs vary with pathogen
strain and how pathogen trade-offs vary with host family
(Hudson et al. 2016). Simple coevolutionary host-parasitoid
models have nevertheless shown that coevolutionary dynam-
ics can also help drive insect outbreak cycles while also help-
ing to maintain variation in the host (Sasaki and Godfray
1999), which in our models is assumed constant.

Allowing for these complications is an important next step
in our work, but the evidence that we have provided for the
effects of natural selection suggests that selection has at least
someeffectonoutbreaks,confirmingeco-evolutionarytheory
in a broader sense. Nevertheless, in the absence of outbreak-
scale experiments, our work cannot provide conclusive proof
of eco-evolutionary cycles, a problem that afflicts most stud-
ies of complex population dynamics (Turchin 2003). For eco-

evolutionary models in particular, simultaneous collection
of phenotypic and density data could provide additional evi-
dence, but for now the combination of experimental and ob-
servational data that we have used here may provide the best
support for eco-evolutionary theory.
The insect ecology literature suggests that eco-evolutionary

dynamics may also play a role in population cycles of other
forest defoliating insects (Anderson and May 1981; Myers
1988, 1993). First, laboratory observations of heritable var-
iation and costs of resistance are common in insect host-
pathogen (Watanabe 1987; Boots and Begon 1993; Cory and
Myers 2009) and host-parasitoid (Kraaijeveld et al. 2002) in-
teractions. Although lab experiments are limited to mea-
surements of risk given exposure, as we described, the results
of our gypsy moth field experiments qualitatively match the
results of gypsy moth lab experiments (Páez et al. 2015).
The large number of previous lab studies showing heritable
variation in insect host-pathogen and host-parasitoid inter-
actions therefore suggests that the effects of natural selection
are widespread. Meanwhile, mortality due to baculoviruses
and parasitoids is high in most cycling forest defoliators
(Nealis 1991; Turchin 2003; Moreau and Lucarotti 2007),
suggesting that selection pressure is often high enough to af-
fect outbreak cycles. More broadly, because seasonality plays
a role in many other host-pathogen interactions (Altizer et al.
2006), the effects of seasonal breeding in our models may
be of general applicability, while the lack of half-cycle lags
in our models means that a lack of such lags in general does
not rule out eco-evolutionary cycles.
Baculoviruses are used as environmentally benign insec-

ticides (Hunter-Fujita et al. 1998), which in the gypsy moth
consists of the Gypchek spray product (Podgwaite et al.
1992). As is often the case with baculoviruses used in pest
control, Gypchek plays only a modest role in gypsy moth
control, because production costs are lower for the insecti-
cide Btk, a naturally occurring bacterial toxin. Btk targets
effectively all Lepidoptera, however, and so concerns over
its environmental costs have led to increasing public demand
for Gypchek (Boulton and Otvos 2004; Narciso 2014; Nolan
2015). Baculovirus spray products like Gypchek may there-
fore be used repeatedly in the future, and the resulting in-
creases in infection rates may substantially alter insect out-
break cycles.
Reilly and Elderd (2014) tested this hypothesis bymodify-

ing theDwyer et al. (2004)model to allow for repeated spray-
ing, which showed that spraying dampens population cycles,
effectively eliminating outbreaks. Our eco-evolutionarymod-
els, however, show that realistic outbreaks occur in nature for
a broader range of parameters than in theDwyer et al.model,
and it may therefore be the case that resistance evolution will
prevent the cycle-dampening effects of repeated baculovirus
sprays, with the proviso that the evolution of increased resis-
tance will likely raise average host densities. Extending our
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models to allow for repeated baculovirus sprays may thus
provide a better understanding of baculovirus use in pest
control, and carrying out such an extension is therefore an-
other next step. Our models thus support the growing con-
sensus that eco-evolutionary theory has direct relevance for
applied ecology (Menalled et al. 2016; Rozins andDay 2016).
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APPENDIX A

Derivation of the Eco-Evolutionary
Host-Pathogen Model

Elderd et al. (2013) present a version of the Dwyer et al.
(2004) model that also includes heritable changes in average
infection risk and a trade-off between infection risk and fe-
cundity. Their model, however, assumes that the phenotypic
and genotypic distributions of infection risk are identical,
as though heritability b p 1. Here we instead assume that
b ! 1, which significantly complicates the derivation of the
model.

The initial steps in the Elderd et al. derivation are never-
theless useful. First, the pathogen equation (6) is unchanged
from the original non-evolutionary insect-pathogen model
of Dwyer et al. (2000), and therefore we do not consider it
here. Second, by temporarily neglecting predation, we can
integrate over the phenotypic distribution to derive an equa-
tion for the host population:

Nn11 p

ð
(r 1 rsn)f P(n)S(T)dn: ðA1Þ

Here fP(n) is the distribution of infection risk phenotypes n
and S(T) is the host density, where both are calculated after
an epizootic that lasts T days. Host density is then calculated
by allowing for disease-driven mortality (which determines
the host density after the epizootic) and by including a fecun-
dity cost of reproduction, as determined by the cost param-
eters r and s. Meanwhile, Elderd et al. assumed that T → ∞,
and they used the alternative parameterization r 1 ln to de-
scribe the cost function, but the effects of these differences
are minor compared with the complications that arise from
assuming that b ! 1.

We further follow the Elderd et al. derivation in assum-
ing that the epizootic reduces the mean of the distribution
of phenotypes but does not change the shape of the distri-
bution, so that the squared coefficient of variation (CV)V is
constant. Given this constant-shape assumption, it is possi-
ble to show that the postepizootic mean is �nn[S(T)=S(0)]

V ,
where �nn is the pre-epizootic mean (Dwyer et al. 2000).
This assumption is also fundamental to the derivation of
the susceptible-exposed-infected-recovered (SEIR) epizootic
model (eqq. [1]–[4]), which is an approximation of a model
that describes the entire distribution of phenotypes. The
SEIR equations provide a highly accurate approximation
of the full model if phenotypes follow a gamma distribution,
but they are only moderately inaccurate for distributions
with longer tails, such as a log-normal distribution.More im-
portantly, for our purposes, the approximation means that
both the SEIRmodel and themultigeneration model derived
here can be simulated with onlymodest computational costs.

Continuing to follow the Elderd et al. derivation, we ob-
serve that the postepizootic host density is

S(T) p Nn[12 i(Nn,Zn,�nn)], ðA2Þ
where i(Nn,Zn,�nn) is calculated using equations (1)–(4). In-
cluding predation and stochasticity then gives equation (5),
which is effectively the same as the host-density equation in
the Elderd et al. model.

As we described, however, a crucial difference from the
Elderd et al. model is that we allow the genotypic and phe-
notypic distributions to have different shape parameters V,
which is necessary to allow for imperfect heritability. This
assumption becomes important when we calculate how the
average phenotype �nn changes as a result of mating, because
in calculating the change in the phenotype, we average the
fecundity costs over the genotypic distribution, whereas in
the host density equation (1), we average over the pheno-
typic distribution. Specifically, we assume that the squared
CV of the genotypic distribution is bV, where V is the
squared CV of the phenotypic distribution and b is the her-
itability. Although other assumptions may also produce a
reasonably simple model, this assumption has several ad-
vantages: (1) it ensures that genotypic variation is lower than
phenotypic variation, as expected from quantitative genetic
theory (Falconer and Mackay 1996); (2) it is consistent with
previous approaches to adding quantitative genetic variation
to predator-prey models (Abrams and Matsuda 1997); and
(3) it produces a model that makes intuitive sense, as we now
show.

To integrate over the genotypic distribution, we proceed
as follows:

�nn11 p

Ð
n(r 1 rsn)f G(n)S(T)dnÐ
(r 1 rsn)f G(n)S(T)dn

: ðA3Þ
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Here fG(n) is the postepizootic distribution of genotypes n,
and S(T) is again the host density after an epidemic that lasts
T days. To solve the integral, we again use the observation
that the mean of the phenotypic distribution after the epizo-
otic is �nn[S(T)=S(0)]

V . Also, we use the assumption that the
genotypic distribution has the same mean as the phenotypic
distribution but that it has a squared CV equal to bV, with
the proviso that for the genotypic distribution, the mean de-
pends on the squared genotypic CV, not the phenotypic CV
as in the host-density equation (A1). We then have equa-
tion (7), which we repeat here for convenience:

�nn11 p �nn[12 i(Nn,Zn,�nn)]
bV

f11 s�nn(bV 1 1)[12 i(Nn,Zn,�nn)]
bVg

11 s�nn[12 i(Nn,Zn,�nn)]
bV :

ðA4Þ

Thismodelmakes intuitive sense, in that setting b p 1 again
produces the Elderd et al. model, while setting b p 0 gives
the classical model with no natural selection, as in Dwyer
et al. (2000) and Dwyer et al. (2004).
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